




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1 B.﹣2 C.﹣1 D.22、在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个 B.5个 C.6个 D.7个3、如图1,点Q为菱形ABCD的边BC上一点,将菱形ABCD沿直线AQ翻折,点B的对应点P落在BC的延长线上.已知动点M从点B出发,在射线BC上以每秒1个单位长度运动.设点M运动的时间为x,△APM的面积为y.图2为y关于x的函数图象,则菱形ABCD的面积为(
)A.12 B.24 C.10 D.204、下列方程:①;②;③;④;⑤.是一元二次方程的是(
)A.①② B.①②④⑤ C.①③④ D.①④⑤5、图,在△ABC中,AB=AC,四边形ADEF为菱形,O为AE,DF的交点,S△ABC=8,则S菱形ADEF=()A.4 B.4 C.4 D.46、如图,ABC是等边三角形,点D、E分别在BC、AC上,且∠ADE=60°,AB=9,BD=3,则CE的长等于()A.1 B. C. D.2二、多选题(6小题,每小题2分,共计12分)1、矩形一定具有的性质是().A.对角线相等 B.内角和为180° C.邻边相等 D.对角互补2、如图,在矩形、锐角三角形、正五边形、直角三角形的外边加一个宽度一样的外框,保证外框的边与原图形的对应边平行,则外框与原图一定相似的有()A. B.C. D.3、用配方法解下列方程,配方错误的是(
)A.化为 B.化为C.化为 D.化为4、如图,在⊙O中,AB为直径,BC为切线,弦ADOC,直线CD交BA的延长线于点E,连接BD.下列结论正确的是(
)A.CD是⊙O的切线 B.CO⊥DBC.△EDA∽△EBD D.5、如图,△ABC中,P为AB上点,在下列四个条件中能确定△APC和△ACB相似的是(
)A.∠ACP=∠B B.∠APC=∠ACB C.∠CAP=∠BAC D.6、(多选)若数使关于的一元二次方程有两个不相等的实数解,且使关于的分式方程的解为非负整数,则满足条件的的值为(
)A.1 B.3 C.5 D.7第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆,从木杆的顶端D观察水岸C,视线与井口的直径交于点E,如果测得米,米,米,那么井深为______米.2、如图,在Rt△ABC中,∠ACB=90°,,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.3、如图,AB,CD相交于O点,△AOC∽△BOD,OC:OD=1:2,AC=5,则BD的长为______.4、在平面直角坐标系中,点O为坐标原点,点A的坐标为(3,4),点B的坐标为(7,0),D,E分别是线段AO,AB上的点,以DE所在直线为对称轴,把△ADE作轴对称变换得△A′DE,点A′恰好在x轴上,若△OA′D与△OAB相似,则OA′的长为________.(结果保留2个有效数字)5、如图,点D,E分别在△ABC的边AC,AB上,△ADE∽△ABC,M,N分别是DE,BC的中点,若=,则=__.6、如果关于的一元二次方程有实数根,那么的取值范围是___.7、如果关于的一元二次方程的一个解是,那么代数式的值是___________.8、如图,在平行四边形中,点在边上,,连接交于点,则的面积与四边形的面积之比为___
四、解答题(6小题,每小题10分,共计60分)1、已知反比例函数y=(m为常数)的图象在第一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A,B的坐标分别为(0,3),(﹣2,0),求出该反比例函数的解析式;(3)若E(x1,y1),F(x2,y2)都在该反比例函数的图象上,且x1>x2>0,则y1和y2有怎样的大小关系?2、如图,与交于点O,,E为延长线上一点,过点E作,交的延长线于点F.(1)求证;(2)若,求的长.3、如图,在平面直角坐标系中,△ABC的BC边与x轴重合,顶点A在y轴的正半轴上,线段OB,OC()的长是关于x的方程的两个根,且满足CO=2AO.(1)求直线AC的解析式;(2)若P为直线AC上一个动点,过点P作PD⊥x轴,垂足为D,PD与直线AB交于点Q,设△CPQ的面积为S(),点P的横坐标为a,求S与a的函数关系式;(3)点M的坐标为,当△MAB为直角三角形时,直接写出m的值.4、如图,已知正方形点在边上,以为边在左侧作正方形;以为邻边作平行四边形连接.(1)判断和的数量及位置关系,并说明理由;(2)将绕点顺时针旋转,在旋转过程中,和的数量及位置关系是否发生变化?请说明理由.5、解方程(组):(1)(2);(3)x(x-7)=8(7-x).6、如图,在菱形ABCD中,AB=6,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.-参考答案-一、单选题1、C【解析】【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【详解】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选C.【考点】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2、C【解析】【分析】根据题意,得出ABC的三边之比,并在直角坐标系中找出与ABC各边长成比例的相似三角形,并在直角坐标系中无一遗漏地表示出来.【详解】解:ABC的三边之比为,如图所示,可能出现的相似三角形共有以下六种情况:所以使得△ADE∽△ABC的格点三角形一共有6个,故选:C.【考点】本题考察了在直角坐标系中画出与已知三角形相似的图形,解题的关键在于找出与已知三角形各边长成比例的三角形,并在直角坐标系中无一遗漏地表示出来.3、D【解析】【分析】由图2,可知BP=6,S△ABP=12,由图1翻折可知,AQ⊥BP,进而得出AQ=4,由勾股定理,可知BC=AB=5,菱形ABCD的面积为BC×AQ即可求出.【详解】解:由图2,得BP=6,S△ABP=12∴AQ=4由翻折可知,AQ⊥BP由勾股定理,得BC=AB==5∴菱形ABCD的面积为BC×AQ=5×4=20故选:D【考点】本题是一道几何变换综合题,解决本题主要用到勾股定理,翻折的性质,根据函数图象找出几何图形中的对应关系是解决本题的关键.4、D【解析】【分析】根据一元二次方程的定义进行判断.【详解】①该方程符合一元二次方程的定义;②该方程中含有2个未知数,不是一元二次方程;③该方程含有分式,它不是一元二次方程;④该方程符合一元二次方程的定义;⑤该方程符合一元二次方程的定义.综上,①④⑤一元二次方程.故选:D.【考点】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.5、C【解析】【分析】根据菱形的性质,结合AB=AC,得出DF为△ABC的中位线,DF∥BC,,从而得出AE为△ABC的高,得出,再根据菱形的面积公式,即可得出菱形的面积.【详解】解:∵四边形ADEF为菱形,∴EF∥AB,DE∥AC,AF=EF=DE=AD,AE⊥DF,∴,,,,,∴CF=EF,DE=DB,,,∴DF∥BC,,,,,,,即,,故C正确.故选:C.【考点】本题主要考查了菱形的性质,中位线的性质,等腰三角形的性质和判断,平行线的性质,菱形的面积,三角形面积的计算,根据菱形的性质和等腰三角形的性质得出DF为△ABC的中位线,是解题的关键.6、D【解析】【分析】通过△ABD∽△DCE,可得,即可求解.【详解】解:∵△ABC是等边三角形,∴AB=BC=9,∠ABC=∠ACB=60°,∵BD=3,∴CD=6,∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∴∴CE=2,故选:D.【考点】本题考查了三角形的相似,做题的关键是△ABD∽△DCE.二、多选题1、AD【解析】【分析】根据矩形的性质依次进行判断即可.【详解】解:A、矩形的对角线相等,正确;B、矩形的内角和为360°,选项错误;C、矩形的邻边不一定相等,选项错误;D、矩形的对角相等均为90°,所以对角互补,正确;故选:AD.【考点】题目主要考查矩形的性质,理解矩形的性质是解题关键.2、BCD【解析】【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【详解】解:矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件,故A不符合题意;锐角三角形、正五边形、直角三角形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件,故B、C、D符合题意.故选BCD.【考点】此题主要考查了相似图形判定,注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.3、BD【解析】【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1,(3)等式两边同时加上一次项系数一半的平方即可得到结论.【详解】A.化为,正确,不符合题意;B.化为,错误,符合题意;C.化为,正确,不符合题意;D.化为,错误,符合题意.故选:BD.【考点】此题考查了配方法解一元二次方程,属于基础题,熟练掌握配方法的一般步骤是解题关键.4、ABC【解析】【分析】由切线的性质得∠CBO=90°,首先连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;根据全等三角形的性质得到CD=CB,根据线段垂直平分线的判定定理得到即CO⊥DB;根据余角的性质得到∠ADE=∠BDO,等量代换得到∠EDA=∠DBE,根据相似三角形的判定定理得到△EDA∽△EBD;根据相似三角形的性质得到,于是得到ED•BC=BO•BE.【详解】解:A.证明:连接DO.∵AB为⊙O的直径,BC为⊙O的切线,∴∠CBO=90°,∵ADOC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线;故选项正确,符合题意;B.证明:∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故选项正确,符合题意;C.证明:∵AB为⊙O的直径,DC为⊙O的切线,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故选项正确,符合题意;D.证明:∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED•BC=BO•BE,故选项错误,不符合题意.故选:ABC.【考点】本题主要考查了切线的判定、全等三角形的判定与性质以及相似三角形的判定与性质,注意掌握辅助线的作法,注意数形结合思想的应用是解答此题的关键.5、ABD【解析】【分析】根据有两组角对应相等的两个三角形相似可对A、B、C进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对D进行判断.【详解】解:∵∠ACP=∠B,∠A公共角,∴△APC∽△ACB,故选项A正确,符合题意;∵∠APC=∠ACB,∠A公共角,∴△APC∽△ACB,故选项B正确,符合题意;∵∠CAP=∠BAC,只有一组角相等,∴不能判断△APC和△ACB相似,故选项C错误,不符合题意;∵,∠A是夹角,∴△APC∽△ACB,故选项D正确,符合题意.故答案为:ABD.【考点】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.6、AC【解析】【分析】根据一元二次方程根的判别式及分式有意义的条件和分式方程的解为非负整数分别求出a的取值范围,即可得答案.【详解】∵关于的一元二次方程有两个不相等的实数解,∴,解得:,∵,∴,解得:,∵关于的分式方程的解为非负整数,∴且,解得:且,∴且a≠3,∵是整数,∴a=1或5,故选:AC.【考点】本题考查一元二次方程根的判别式、解分式方程及分式有意义的条件,正确得出两个不等式的解集是解题关键,注意分式的分母不为0的隐含条件,避免漏解.三、填空题1、7【解析】【分析】由题意易得,则有,然后问题可求解.【详解】解:∵,∴,∴,∵米,米,米,∴,解得米,故井深AC为7米.【考点】本题主要考查相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.2、或##或【解析】【分析】连接,根据题意可得,当∠ADQ=90°时,分点在线段上和的延长线上,且,勾股定理求得即可.【详解】如图,连接,在Rt△ABC中,∠ACB=90°,,,,,根据题意可得,当∠ADQ=90°时,点在上,且,,如图,在中,,在中,故答案为:或.【考点】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点的位置是解题的关键.3、10【解析】【分析】根据相似三角形的对应边的比相等列式计算即可.【详解】∵△AOC∽△BOD,∴,即,解得:BD=10.故答案为10.【考点】本题考查了相似三角形的性质,掌握相似三角形的对应角相等,对应边的比相等是解题的关键.4、2.0或3.3【解析】【分析】由点A的坐标为(3,4),点B的坐标为(7,0),可得OA=5,OB=7,AB=4,然后分别由△OA′D∽△OAB与△OA′D∽△OBA,根据相似三角形的对应边成比例,即可得答案.【详解】∵点A的坐标为(3,4),点B的坐标为(7,0),∴OA==5,OB=7,AB==4,若△OA′D∽△OAB,则,设AD=x,则OD=5﹣x,A′D=x,即,解得:x≈2.2,∴,∴OA′=2.0;若△OA′D∽△OBA,则,同理:可得:OA′≈3.3.故答案为2.0或3.3.【考点】此题考查了相似三角形的性质与折叠的知识.注意数形结合与方程思想的应用,小心别漏解是解题关键.5、【解析】【分析】根据相似三角形对应中线的比等于相似比求出,根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵M,N分别是DE,BC的中点,∴AM、AN分别为△ADE、△ABC的中线,∵△ADE∽△ABC,∴==,∴=()2=,故答案为:.【考点】本题考查了相似三角形的性质,掌握相似三角形面积的比等于相似比的平方、相似三角形对应中线的比等于相似比是解题的关键.6、【解析】【分析】由一元二次方程根与系数的关键可得:从而列不等式可得答案.【详解】解:关于的一元二次方程有实数根,故答案为:【考点】本题考查的是一元二次方程根的判别式,掌握一元二次方程根的判别式是解题的关键.7、【解析】【分析】根据关于的一元二次方程的一个解是,可以得到的值,然后将所求式子变形,再将的值代入,即可解答本题.【详解】解:关于的一元二次方程的一个解是,,,.故答案为:2020.【考点】本题考查一元二次方程的解,解答本题的关键是明确一元二次方程的解的含义.8、【解析】【分析】由DE:EC=3:1,可得DF:FB=3:4,根据在高相等的情况下三角形面积比等于底边的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面积与四边形BCEF的面积的比值.【详解】解:连接BE∵DE:EC=3:1∴设DE=3k,EC=k,则CD=4k∵ABCD是平行四边形∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4∵DE:EC=3:1∴S△BDE:S△BEC=3:1设S△BDE=3a,S△BEC=a则S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴则△DEF的面积与四边形BCEF的面积之比9:19故答案为:.【考点】本题考查了平行线分线段成比例,平行四边形的性质,关键是运用在高相等的情况下三角形面积比等于底边的比求三角形的面积比值.四、解答题1、(1)m<;(2)该反比例函数的解析式为y=;(3)y1<y2.【解析】【分析】(1)由图象在第一、三象限可得关于m的不等式,然后解不等式即可;(2)先根据平行四边形的性质求出D点的坐标,然后将D点的坐标代入y=可求得1-2m的值即可;(3)利用反比例函数的增减性解答即可.【详解】解:(1)∵y=的图象在第一、三象限,∴1﹣2m>0,∴m<;(2)∵四边形ABOD为平行四边形,∴AD∥OB,AD=OB=2,∴D点坐标为(2,3),∴1﹣2m=2×3=6,∴该反比例函数的解析式为y=;(3)∵x1>x2>0,∴E,F两点都在第一象限,又∵该反比例函数在每一个象限内,函数值y都随x的增大而减小,∴y1<y2.【考点】本题考查了反比例函数的解析式、反比例函数的性质以及反比例函数与几何的综合,掌握反比例函数的定义及性质是解答本题的关键.2、(1)证明见解析;(2)【解析】【分析】(1)直接利用“AAS”判定两三角形全等即可;(2)先分别求出BE和DC的长,再利用相似三角形的判定与性质进行计算即可.【详解】解:(1)∵,又∵,∴;(2)∵,∴,,∵,∴,∴,∴,∴,∴的长为.【考点】本题考查了全等三角形的判定与性质、平行线分线段成比例的推论、相似三角形的判定与性质等,解决本题的关键是牢记相关概念与公式,能结合图形建立线段之间的关联等,本题较基础,考查了学生的几何语言表达和对基础知识的掌握与应用等.3、(1);(2);(3)m的值为-3或-1或2或7;【解析】【分析】(1)根据一元二次方程的解求出OB和OC的长度,然后得到点B,点C坐标和OA的长度,进而得到点A坐标,最后使用待定系数法即可求出直线AC的解析式;(2)根据点A,点B坐标使用待定系数法求出直线AB的解析式,根据直线AB解析式和直线AC解析式求出点P,Q,D坐标,进而求出PQ和CD的长度,然后根据三角形面积公式求出S,最后对a的值进行分类讨论即可;(3)根据△MAB的直角顶点进行分类讨论,然后根据勾股定理求解即可.(1)解:解方程得,,∵线段OB,OC()的长是关于x的方程的两个根,∴OB=1,OC=6,∴,,∵CO=2AO,∴OA=3,∴,设直线AC的解析式为,把点,代入得,解得,∴直线AC的解析式为;(2)解:设直线AB的解析式为y=px+q,把,代入直线AB解析式得,解得,∴直线AB的解析式为,∵PD⊥x轴,垂足为D,PD与直线AB交于点Q,点P的横坐标为a,∴,,,∴,,∴,当点P与点A或点C重合时,即当a=0或时,此时S=0,不符合题意,当时,,当时,,当时,,∴;(3)解:∵,,,∴,,,当∠MAB=90°时,,∴,解得,当∠ABM=90°时,,∴,解得m=7,当∠AMB=90°时,,∴,解得,,∴m的值为-3或-1或2或7.【考点】本题考查解一元二次方程、待定系数法求一次函数解析式、三角形面积公式、勾股定理,正确应用分类讨论思想是解题关键.4、(1);;理由见解析;(2)与的数量及位置关系都不变;答案见解析.【解析】【分析】(1)证明,由全等三角形的性质得出,,得出,则可得出结论;(2)证明,由全等三角形的性质得出,,由平行线的性质证出,则可得出结论.【详解】解:(1),.由题意可得,平行四边形为矩形,,,,,,,,,设与交于点,则,即.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天下桃李教学课件官网
- 诚信经营风水培训课件
- 教学成果凝练课件图片大全
- 执法证考证题目复习测试题
- 2025年本科院校组织部招聘笔试预测题解
- 识字一课件教学课件
- 2025年监察岗面试重点题库
- 2025年政府驻港澳招聘面试模拟题与参考答案
- 2025年妇联干事面试模拟题集
- 2025年环保科技实习生入职协议:环保设备设计专业就业合同
- 2025年教科版新教材科学三年级上册全册教案设计(含教学计划)
- 医院药品采购与质量控制规范
- 支部纪检委员课件
- 枣庄学院《图学基础与计算机绘图》2024-2025学年第一学期期末试卷
- 2025版仓储库房租赁合同范本(含合同生效条件)
- GB 46031-2025可燃粉尘工艺系统防爆技术规范
- 2025至2030年中国纳米抛光浆料行业发展监测及发展趋势预测报告
- 养老护理员培训班课件
- 2025-2030城市矿产开发利用政策支持与商业模式创新报告
- 隔爆水棚替换自动隔爆装置方案及安全技术措施
- 医学减重管理体系
评论
0/150
提交评论