




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《全等三角形》同步测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在和中,,则下列结论中错误的是(
)A. B. C. D.E为BC中点2、有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是拿两根长度相同的细木条,把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么△OAB≌△OCD理由是(
)A.边角边 B.角边角 C.边边边 D.角角边3、中,厘米,,厘米,点D为AB的中点如果点P在线段BC上以v厘米秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若点Q的运动速度为3厘米秒,则当与全等时,v的值为A. B.3 C.或3 D.1或54、如图,与相交于点O,,不添加辅助线,判定的依据是(
)A. B. C. D.5、如图,已知图中的两个三角形全等,则∠α的度数是()A.72° B.60° C.58° D.50°第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,已知△ABC与△DEF全等,且∠A=72°、∠B=45°、∠E=63°、BC=10,EF=10,那么∠D=_____度.2、如图,点B,F,C,E在一条直线上,,,请添加一个条件,使≌,这个添加的条件可以是______(只需写一个,不添加辅助线).3、如图,的三边的长分别为,其三条角平分线交于点,则=______.4、如图,ADBC,,,连接AC,过点D作于E,过点B作于F.(1)若,则∠ADE为___°(2)写出线段BF、EF、DE三者间的数量关系___.5、如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=______度.三、解答题(5小题,每小题10分,共计50分)1、如图,点B、C、D在同一直线上,△ABC、△ADE是等边三角形,CE=5,CD=2(1)证明:△ABD≌△ACE;(2)求∠ECD的度数;(3)求AC的长.2、如图,和都是等边三角形,连接与,延长交于点H.(1)证明:;(2)求的度数;(3)连接,求证:平分.3、如图,在中,,,分别过点B,C向过点A的直线作垂线,垂足分别为点E,F.(1)如图①,过点A的直线与斜边BC不相交时,求证:①;②.(2)如图②,其他条件不变,过点A的直线与斜边BC相交时,若,,试求EF的长.4、如图,在△ABC中,∠ABC=90°,AB=CB,点E在边BC上,点F在边AB的延长线上,BE=BF.
(1)求证:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度数.5、小明的学习过程中,对教材中的一个有趣问题做如下探究:(1)【习题回顾】已知:如图1,在中,,是角平分线,是高,相交于点.求证:;(2)【变式思考】如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,若,求和的度数;(3)【探究延伸】如图3,在中,在上存在一点,使得,角平分线交于点.的外角的平分线所在直线与的延长线交于点.若,求的度数.-参考答案-一、单选题1、D【解析】【分析】首先证明,推出,,由,推出,推出,即可一一判断.【详解】解:∵,∴和为直角三角形,在和中,,∴,∴,,,∵,∴,∴,故A、B、C正确,故选:D.【考点】本题主要考查全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质.2、A【解析】【详解】解:∵根据SAS得:△OAB≌△ODC.故选A.3、C【解析】【分析】此题要分两种情况:①当BD=PC时,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,计算出BP的长,进而可得运动时间,然后再求v.【详解】①当BD=PC时,∵点D为AB的中点,∴BD=AB=6厘米,∵BD=PC,∴BP=9-6=3(厘米),∴CQ=BP=3厘米,∴点Q运动了3÷3=1秒∴点P在线段BC上的运动速度是3÷1=3(厘米秒),②当BD=CQ时,∴BD=CQ=6厘米,点Q运动了6÷3=2秒.∵△BDP≌△CQP,∴BP=CP=厘米,∴点P在线段BC上的运动速度是÷2=2.25(厘米秒),故选C.【考点】此题主要考查了全等三角形的性质,全等三角形的对应边相等,对应角相等,关键是要分情况讨论,不要漏解.4、B【解析】【分析】根据,,正好是两边一夹角,即可得出答案.【详解】解:∵在△ABO和△DCO中,,∴,故B正确.故选:B.【考点】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键.5、D【解析】【分析】根据∠α是a、c边的夹角,50°的角是a、c边的夹角,然后根据两个三角形全等写出即可.【详解】解:∵∠α是a、c边的夹角,50°的角是a、c边的夹角,又∵两个三角形全等,∴∠α的度数是50°.故选:D.【考点】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解答本题的关键.全等三角形的对应角相等,对应边相等.对应边的对角是对应角,对应角的对边是对应边.二、填空题1、【解析】【分析】△ABC中,根据三角形内角和定理求得∠C=63°,那么∠C=∠E.根据相等的角是对应角,相等的边是对应边得出△ABC≌△DFE,然后根据全等三角形的对应角相等即可求得∠D.【详解】解:在△ABC中,∵∠A=72°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=63°,∵∠E=63°,∴∠C=∠E.∵△ABC与△DEF全等,BC=10,EF=10,∴△ABC≌△DFE,∴∠D=∠A=72°,故答案为72.【考点】本题考查了全等三角形的性质;注意:题目条件中△ABC与△DEF全等,但是没有明确对应顶点.得出△ABC≌△DFE是解题的关键.2、(还可以添加∠A=∠D或∠ACB=∠EFD或AC∥DF,答案不唯一)【解析】【分析】根据等式的性质可得BC=EF,再添加AB=DE,可利用SAS判定△ABC≌△DEF.【详解】添加的条件是,∵,∴,即.∵在中中,.故答案为:.(还可以添加或或,答案不唯一)【考点】本题主要考查了三角形全等的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3、【解析】【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【详解】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=.故答案为:.【考点】此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.4、
30
【解析】【分析】(1)根据直角三角形两锐角互余进行倒角即可求解;(2)根据ASA证明≌,即可求解.【详解】解:(1)∵,且ADBC,,∴,∴,∴,∴;故答案为:30;(2)在和中,,∴≌,∴,,∵,∴.故答案为:【考点】本题考查直角三角形两锐角互余、全等三角形的判定与性质等内容,根据已知条件进行倒角是解题的关键.5、120【解析】【分析】根基三角形全等的性质得到∠C=∠C′=24°,再根据三角形的内角和定理求出答案.【详解】∵,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案为:120.【考点】此题考查三角形全等的性质定理:全等三角形的对应角相等,三角形的内角和定理.三、解答题1、(1)见解析(2)60°(3)3【解析】【分析】(1)根据等边三角形的性质利用SAS证明;(2)利用全等三角形的性质得到∠B=∠ACE=60°,计算即可得到答案;(3)利用全等的性质得到BD的长,再由等边三角形的性质,即可得到AC的长.(1)证明:∵△ABC和△ADE是等边三角形,∴AD=AE,AB=AC,∠BAC=∠DAE=∠ACB=60°,∴∠BAD=∠CAE,∴△ABD≌△ACE;(2)解:∵△ABD≌△ACE,∴∠B=∠ACE=60°,∴∠DCE=180°-∠ACB-∠ACE=60°;(3)解:∵△ABD≌△ACE,∴BD=CE=5,∴BC=BD-CD=5-2=3,∴AC=BC=3.【考点】此题考查了全等三角形的判定及性质,熟记全等三角形的几种判定定理:SSS,SAS,ASA,AAS,HL,并熟练应用是解题的关键.2、(1)见解析(2)60°(3)见解析【解析】【分析】(1)由△ABD和△BCE都是等边三角形得BA=BD,BE=BC,∠ABD=∠EBC=60°,所以∠ABE=∠DBC=60°−∠DBE,即可根据全等三角形的判定定理“SAS”证明△ABE≌△DBC,得AE=DC;(2)由△ABE≌△DBC得∠BAE=∠BDC,因为∠BAD=∠BDA=60°,所以∠HAD+∠HDA==120°,所以∠AHD=60°;(3)作BF⊥HA于点F,BG⊥HC交HC的延长线于点G,则∠AFB=∠BFH=∠G=90°,即可证明△BAF≌△BDG,则BF=BG,根据“到角的两边距离相等的点在角的平分线上”即可证明HB平分∠AHC.(1)证明:如图1,∵△ABD和△BCE都是等边三角形,∴BA=BD,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=60°−∠DBE,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC.(2)解:如图1,由(1)得△ABE≌△DBC,∴∠BAE=∠BDC,∵∠BAD=∠BDA=60°,∴∠HAD+∠HAD=∠HAD+∠BDC+∠BDA=∠HAD+∠BAE+∠BDA=∠BAD+∠BDA=120°,∴∠AHD=180°−(∠HAD+∠HDA)=60°.(3)证明:如图2,作BF⊥HA于点F,BG⊥HC交HC的延长线于点G,则∠AFB=∠BFH=∠G=90°,由△ABE≌△DBC得∠BAF=∠BDG,在△BAF和△BDG中,,∴△BAF≌△BDG(AAS),∴BF=BG,∴点B在∠AHC的平分线上,∴HB平分∠AHC.【考点】此题考查等边三角形的性质、全等三角形的判定与性质、到角的两边距离相等的点在角的平分线上等知识,证明三角形全等是解题的关键.3、(1)①见详解;②见详解;(2)7【解析】【分析】(1)①由条件可求得∠EBA=∠FAC,利用AAS可证明△ABE≌△CAF;②利用全等三角形的性质可得EA=FC,EB=FA,利用线段的和差可证得结论;(2)同(1)可证明△ABE≌△CAF,可证得EF=FA−EA,代入可求得EF的长.【详解】(1)证明:①∵BE⊥EF,CF⊥EF,∴∠AEB=∠CFA=90°,∴∠EAB+∠EBA=90°,∵∠BAC=90°,∴∠EAB+∠FAC=90°,∴∠EBA=∠FAC,在△AEB与△CFA中∵,∴△ABE≌△CAF(AAS),②∵△ABE≌△CAF,∴EA=FC,EB=FA,∴EF=AF+AE=BE+CF;(2)解:∵BE⊥AF,CF⊥AF∴∠AEB=∠CFA=90°∴∠EAB+∠EBA=90°∵∠BAC=90°∴∠EAB+∠FAC=90°∴∠EBA=∠FAC,在△AEB与△CFA中,∴△ABE≌△CAF(AAS),∴EA=FC,EB=FA,∴EF=FA−EA=EB−FC=10−3=7.【考点】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.4、(1)见解析;(2)∠ACF的度数为60°【解析】【分析】(1)由∠ABC=90°可得∠CBF=90°,再由SAS就即可得出△ABE≌△CBF;(2)根据题意可得∠BAC=∠ACB=45°由∠CAE=30°可得∠BAE=15°,即∠BCF=15°,进而可以求出∠ACF的度数.【详解】(1)证明:∵∠ABC=90°,
∴∠ABC=∠CBF=90°.在△ABE和△CBF中,,∴△ABE≌△CBF(SAS);(2)解:∵△ABE≌△CBF,
∴∠BAE=∠BCF,∵∠ABC=90°,AB=CB,∴∠BCA=∠BAC=45°,∵∠CAE=30°,∴∠BAE=15°,∴∠BCF=15°,∵∠ACF=∠BCF+∠ACB,∴∠ACF=15°+45°=60°.答:∠ACF的度数为60°.【考点】本题主要考查全等三角形的判定与性质,解此题的关键在于熟练掌握全等三角形的判定方法.5、(1)见解析;(2)25°,25°;(3)55°【解析】【分析】(1)由余角的性质可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年福建省南平市光泽县招聘医疗人才10人考前自测高频考点模拟试题及一套完整答案详解
- 2025广东南粤银行佛山分行招聘模拟试卷附答案详解(模拟题)
- 2025年福建省莆田市大济镇向社会招聘1人考前自测高频考点模拟试题及答案详解(新)
- 2025年甘肃省平凉市崆峒区人民法院招聘司法辅助人员考前自测高频考点模拟试题完整答案详解
- 横琴2025年低空经济跨境合作模式创新与监管实践报告
- 低空经济行业2025「央地协同」政策工具箱与航空产业转型升级报告
- 直升机救生员操作能力测试考核试卷含答案
- 木刻水印雕刻版员安全技能测试知识考核试卷含答案
- 缝制机械装配工操作评优考核试卷含答案
- 2025年临沂沂南县教育系统部分事业单位公开招聘教师(5名)考前自测高频考点模拟试题及答案详解(有一套)
- 2025年陕西音乐联考试题及答案
- 2025年秋招:招商银行笔试真题及答案
- 吞咽功能障碍健康指导
- 2025至2030拖拉机市场前景分析及行业深度研究及发展前景投资评估分析
- 中外运社招在线测评题
- 无损检测技术人员岗位面试问题及答案
- 肉鸭孵化期蛋内生长发育与出雏时间的影响研究
- 监控资料留存管理制度
- 2025年辽宁高考地理试卷真题答案详解讲评课件(黑龙江吉林内蒙古适用)
- 2025届上海市高考英语考纲词汇表
- 小学生生活常识教育班会
评论
0/150
提交评论