难点解析鲁教版(五四制)7年级数学下册期末测试卷附参考答案详解(综合卷)_第1页
难点解析鲁教版(五四制)7年级数学下册期末测试卷附参考答案详解(综合卷)_第2页
难点解析鲁教版(五四制)7年级数学下册期末测试卷附参考答案详解(综合卷)_第3页
难点解析鲁教版(五四制)7年级数学下册期末测试卷附参考答案详解(综合卷)_第4页
难点解析鲁教版(五四制)7年级数学下册期末测试卷附参考答案详解(综合卷)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

鲁教版(五四制)7年级数学下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、△ABC中,AB=AC,其中一个角为50°,则此等腰三角形的顶角为()A.50° B.80° C.100° D.50°或80°2、如图,在中,,AE是的外角的平分线,BF平分与AE的反向延长线相交于点F,则为()A.35° B.40° C.45° D.50°3、下列事件属于不可能事件的是()A.经过有交通信号灯的路口,遇到红灯B.任意画一个三角形,其内角和等于180°C.连续掷两次骰子,向上一面的点数都是6D.明天太阳从西边升起4、如果是二元一次方程,那么m、n的值分别为()A.2、3 B.2、1 C.3、4 D.-1、25、如图,在平行四边形ABCD中,将△ABC沿着AC所在的直线折叠得到△AB′C,B′C交AD于点E,连接B′D,若∠B=60°,∠ACB=45°,AC=,则B′D的长是()A.1 B. C. D.6、如图,在△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,BC=8cm,BD:CD=3:4,则点D到AC的距离为()cm.A.3 B.4 C. D.7、下列事件中,属于必然事件的是()A.购买一张彩票,中奖B.从煮熟的鸡蛋里孵出小鸡,神奇C.篮球队员在罚球线投篮一次,投中D.实心铅球投入水中,下沉8、如图,点E,C,F,B在同一条直线上,ACDF,EC=BF,则添加下列条件中的一个条件后,不一定能判定△ABC≌△DEF的是()A.AC=DF B.AB=DE C.∠A=∠D D.ABDE9、如图,ABC中,AB>AC,AD平分∠BAC,AE⊥BC于E,若∠B=α,∠C=β,则∠ADC的度数为()A. B.C. D.10、下列事件中,属于必然事件的是()A.经过路口,恰好遇到红灯 B.367人中至少有2人的生日相同C.打开电视,正在播放动画片 D.抛一枚质地均匀的硬币,正面朝上第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、不等式的解为______.2、关于x的不等式组的所有整数解的和为﹣5,则a的取值范围是_____.3、如图,在△ABC中,BC的垂直平分线分别交AC,BC于点D,E.若△ABC的周长为20,BE=4,则△ABD的周长为_______.4、如图,如果AD∥BC,下列结论正确的是___.(将正确的编号填写在横线上)①∠B=∠D;②∠DAC=∠ACB;③∠BAC=∠ACD;④∠B+∠DCB=180°.5、如图,中,AB=AC=BC=10,点D、E、F分别在边BC、AB和AC上,AE=6,当以B、D、E为顶点的三角形与以C、D、F为顶点的三角形全等时,BD=______.6、已知不等式的解集为,则a的值为______.7、不等式的自然数解是_________.8、如图,△ABC≌△DCB,∠DBC=36°,则∠AOB=_____.9、如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,若BC=4,则BD=_____.10、如图,∠A=30°,∠BCD=60°,则∠ABC=______.三、解答题(6小题,每小题10分,共计60分)1、如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:(1)∠AEB的度数为;(2)线段AD、BE之间的数量关系是.(3)当点A、D、E不在同一直线上,∠AEB的度数会发生变化吗?(填写“变化”或“不变”).2、如图,在中,,AB边的垂直平分线分别交AB于点E,交AC于点F,点D在EF上,且,G是AC的中点,连接DG.(1)求证:;(2)判断是否是等边三角形,并说明理由.3、利用不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式,并将解集在数轴上表示出来.(1)3x<5x-4;(2)x+2≤1;4、在中,,点D是线段上一点,连接,在右侧作,且,连接,已知.(1)求的度数;(2)求的长;5、在①,②,③这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.问题:如图,点A、D、B、E在同一条直线上,,,若______,求证:.(注:如果选择多个条件分别作答,按第一个解答计分.)6、已知.(1)比较与的大小,并说明理由.(2)若,求a的取值范围.-参考答案-一、单选题1、D【解析】【分析】分50度的角为底角和顶角两种情形讨论,根据等腰三角形的性质及三角形的内角和直接求出顶角即可.【详解】解:①当50°的角为顶角时,则此等腰三角形的顶角为②当50°的角为底角时,则此等腰三角形的顶角为综上,此等腰三角形的顶角为50°或80°故选D【点睛】本题考查了等腰三角形的性质及三角形的内角和,分类讨论是解题的关键.2、C【解析】【分析】设∠ABF=x,根据BF平分得到∠ABC=2x,求出∠DAB=90°+2x,利用AE是的平分线,得到∠EAB=45°+x,结合三角形外角性质得到答案.【详解】解:设∠ABF=x,∵BF平分,∴∠ABC=2∠ABF=2x,∵,∴∠DAB=∠C+∠ABC=90°+2x,∵AE是的平分线,∴∠EAB=45°+x,∵∠EAB=∠ABF+∴=45°故选:C.【点睛】此题考查了角平分线计算,三角形的外角性质,综合考查了分析能力及推理论证能力,属于基础题型.3、D【解析】【分析】根据事件发生的可能性大小判断即可.【详解】解:A、经过有交通信号灯的路口,遇到红灯,是随机事件,选项不符合题意;B、任意画一个三角形,其内角和等于,是必然事件,选项不符合题意;C、连续掷两次骰子,向上一面的点数都是6,是随机事件,选项不符合题意;D、明天太阳从西边升起,是不可能事件,选项符合题意;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、C【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程可得,解二元一次方程组即可求得的值.【详解】解:∵是二元一次方程,∴①+②×2得:,将代入②,解得故选C【点睛】本题考查了二元一次方程的定义,加减消元法解二元一次方程组,根据二元一次方程的定义列二元一次方程组是解题的关键.5、B【解析】【分析】先通过角度关系与大小证明AD⊥B’C,再通过直角三角形各边长之间的关系求出B’D的长度.【详解】∵四边形ABCD是平行四边形∴AD∥BC,AB∥CD,∠ADC=60°∴∠CAE=∠ACB=45°∵将△ABC沿AC翻折至△AB’C,∴∠AB’C=∠B=60°∴∠AEC=180°-∠CAE-∠ACB’=90°∴AE=CE=AC=,∴∠AEC=90°,∠AB’C=60°,∠ADC=60°,∴∠B’AD=30°,∠DCE=30°,∴B’E=DE=1,∴B’D==故选:B.【点睛】本题通过折叠问题考查了角度的计算和特殊直角三角形的三边之间的关系,掌握这些是本题解题关键.6、D【解析】【分析】由条件可先求得BD的长,再根据角平分线的性质可知D到AC的距离等于BD,可得到答案.【详解】解:∵BC=8cm,BD:CD=3:4,∴BD=cm,∵AD平分∠BAC,∠B=90°,∴D到AC的距离等于BD,∴D点到线段AC的距离为cm,故选:D.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.7、D【解析】【分析】根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.【详解】A.购买一张彩票,中奖,是随机事件,不符合题意;B.从煮熟的鸡蛋里孵出小鸡,神奇,是不可能事件,不符合题意;C.篮球队员在罚球线投篮一次,投中,是随机事件,不符合题意;D.实心铅球投入水中,下沉,是必然事件,符合题意;故选D【点睛】本题考查了确定事件和随机事件的定义,熟悉定义是解题的关键.8、B【解析】【分析】先证明∠ACB=∠DFE,EF=BC,然后根据全等三角形的判定方法对各选项进行判断.【详解】解:∵AC//DF,∴∠ACB=∠DFE,∵EC=BF,∴EC+CF=BF+CF,即EF=BC,∴当添加AC=DF时,可根据“SAS”判定△ABC≌△DEF;当添加∠A=∠D时,可根据“AAS”判定△ABC≌△DEF;当添加AB∥DE时,∠B=∠E,可根据“ASA”判定△ABC≌△DEF.故选:B.【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用哪一种方法,取决于题目中的已知条件.9、D【解析】【分析】根据角平分线的性质可知.由三角形内角和定理求出,从而可推出.再由三角形外角性质可知,即可得出,即得出答案.【详解】∵AD平分∠BAC,∴.∵,∴.∵,∴.∵∠B=α,∠C=β,∴.故选D.【点睛】本题考查角平分线的性质,三角形内角和定理,三角形外角的性质.利用数形结合的思想是解答本题的关键.10、B【解析】【分析】必然发生的事件是必然事件,根据定义解答.【详解】解:A.经过路口,恰好遇到红灯是随机事件,故该项不符合题意;B.367人中至少有2人的生日相同是必然事件,故该项符合题意;C.打开电视,正在播放动画片是随机事件,故该项不符合题意;D.抛一枚质地均匀的硬币,正面朝上是随机事件,故该项不符合题意;故选:B.【点睛】此题考查了必然事件的定义,熟记定义是解题的关键.二、填空题1、x>【解析】【分析】不等式去括号,移项,合并同类项,把x系数化为1,即可求出解集.【详解】解:去括号得:2x−2>−1,移项得:2x>−1+2,合并得:2x>1,解得:x>.故答案为:x>.【点睛】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.2、【解析】【分析】根据不等式组所有整数解之和为﹣5可知,比2小的连续整数之和为﹣5的情况为,,最小整数为﹣3,故且,解出解集即可.【详解】解:不等式,解集为:,不等式,的解集为:,∵不等式组所有整数解之和为﹣5,,∴且,解得:,,综上所述,,故答案为:.【点睛】本题考查解一元一次不等式组的解集,以及数形结合思想,能够熟练应用数形结合思想是解决本题的关键.3、12【解析】【分析】根据线段的垂直平分线的性质得到DB=DC,BC=2BE=8,根据三角形的周长公式计算即可.【详解】解:∵DE是BC的垂直平分线,∴DB=DC,BC=2BE=8,∵△ABC的周长为20,∴AB+BC+AC=20,∴AB+AC=12,∴△ABD的周长=AD+BD+AB=AD+CD+AB=AB+AC=12,故答案为:12.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4、②【解析】【分析】根据AD∥BC,利用平行线的性质逐一推理即可找出答案.【详解】解:∵AD∥BC,∴∠DAC=∠ACB(两直线平行,内错角相等),故②正确,①、③、④由AD∥BC无法求证,故①、③、④错误,故答案为:②.【点睛】本题考查平行线的性质,熟练掌握平行线形成角的关系是解题关键.5、6或5##5或6【解析】【分析】设BD=x,则CD=10−x,BE=4,由于∠B=∠C=60°,利用三角形全等的判定方法,当BE=CD,BD=CF时,△BED≌△CDF,当BE=CF,BD=CD时,△BED≌△CFD,从而得到对应的BD的长.【详解】解:设BD=x,则CD=10−x,∵AE=6,∴BE=AB−AE=10−6=4,∵AB=AC=BC,∴∠B=∠C=60°,∴当BE=CD,BD=CF时,△BED≌△CDF,即CD=4,BD=CF=6;当BE=CF,BD=CD时,△BED≌△CFD,即BD=CD=5,CF=BE=4,综上所述,BD的长为6或5.故答案为:6或5.【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.6、12【解析】【分析】先解不等式得到,结合得到进而求出a的值12.【详解】解:解不等式:,得到,又不等式的解集为:,∴,解得a=12,故答案为:12.【点睛】本题考查了不等式的解法,属于基础题,计算过程中细心即可.7、0,1##1,0【解析】【分析】先求出不等式的解集,即可求解.【详解】解:,∴,解得:,自然数的解是、.故答案为:0;1【点睛】本题主要考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤是解题的关键.8、72°##72度【解析】【分析】由全等三角形的对应角相等和三角形外角定理求解.【详解】解:如图△ABC≌△DCB,∠DBC=36°,∠ACB=∠DBC=36°,∠AOB=∠ACB+∠DBC=36°+36°=72°故答案为:72°.【点睛】本题考查全等三角形对应角相等、三角形的一个外角等于与它不相邻的两个内角和,掌握相关知识是解题关键.9、2【解析】【分析】由在△ABC中,AB=AC,AD⊥BC,根据等腰三角形三线合一的性质求解即可求得BD的长.【详解】解:∵AB=AC,AD⊥BC,∴BD=BC=×4=2.故答案为:2.【点睛】本题考查了等腰三角形的性质.注意等腰三角形的顶角平分线、底边上的中线、底边上的高三线合一.10、30°【解析】【分析】根据三角形外角的性质解决此题.【详解】解:,.故答案为:.【点睛】本题主要考查三角形外角的性质,解题的关键是熟练掌握三角形外角的性质.三、解答题1、(1)60°(2)AD=BE(3)变化【解析】【分析】(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数;(2)根据全等三角形的对应边相等可得结论;(3)分类讨论当点E在内部和当点E在外部时,根据三角形内角和定理和全等三角形的性质即可证明.(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACB-∠BCD=∠DCE-∠BCD,即∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC-∠CED=60°.故答案为:60°.(2)∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(3)点A、D、E不在同一直线上,∠AEB的度数会发生变化,理由如下:①如图,当点E在内部时∵,,∴,∴;②如图,当点E在外部时,根据(1)同理易证,∴,∵,∴,即,∴,∴.【点睛】本题考查等边三角形的性质,全等三角形的判定和性质.掌握全等三角形的判定方法是解答本题的关键.2、(1)见解析(2)是等边三角形,理由见解析【解析】【分析】(1)连接AD,先证明是等腰三角形,再根据三线合一即可证明;(2)先求得,再得到,故可得到,即可证明.(1)解:连接AD,∵EF是AB的垂直平分线,点D在EF上,∴.又∵,∴,∴是等腰三角形.∵G是AC的中点,∴.(2)是等边三角形,理由如下:∵,∴,,∵,∴,∴,∴是等边三角形.【点睛】此题主要考查等腰三角形与等边三角形的判定与性质,解题的关键是熟知垂直平分线的性质、等腰三角形的性质定理.3、(1)x>2;在数轴表示见解析(2)x≤-;在数轴表示见解析【解析】【分析】(1)两边都减去5x再除以-2求出解集,利用数轴上数的大小关系表示出解集;(2)两边同时减去2再乘以求出解集,利用数轴上数的大小关系表示出解集.(1)(1)两边都减去5x得:-2x<-4,同时除以-2得x>2,数轴上表示为.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论