难点解析人教版8年级数学下册《平行四边形》专题练习试题(解析卷)_第1页
难点解析人教版8年级数学下册《平行四边形》专题练习试题(解析卷)_第2页
难点解析人教版8年级数学下册《平行四边形》专题练习试题(解析卷)_第3页
难点解析人教版8年级数学下册《平行四边形》专题练习试题(解析卷)_第4页
难点解析人教版8年级数学下册《平行四边形》专题练习试题(解析卷)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学下册《平行四边形》专题练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,阴影部分是将一个菱形剪去一个平行四边形后剩下的,要想知道阴影部分的周长,需要测量一些线段的长,这些线段可以是()A.AF B.AB C.AB与BC D.BC与CD2、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有()A.①②③ B.②③④ C.①②④ D.①④3、如图,四边形ABCD是平行四边形,下列结论中错误的是()A.当▱ABCD是矩形时,∠ABC=90° B.当▱ABCD是菱形时,AC⊥BDC.当▱ABCD是正方形时,AC=BD D.当▱ABCD是菱形时,AB=AC4、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是()A.梯形的下底是上底的两倍 B.梯形最大角是C.梯形的腰与上底相等 D.梯形的底角是5、已知菱形的边长为6,一个内角为60°,则菱形较长的对角线长是()A. B. C.3 D.6第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在正方形ABCD中,AB=2,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是_____.2、如图,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.3、已知如图,点E,F分别在正方形的边,上,,若,,则_________.4、如图,O为坐标原点,△ABO的两个顶点A(6,0),B(6,6),点D在边AB上,点C在边OA上,且BD=AC=1,点P为边OB上的动点,则PC+PD的最小值为_____.5、如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为_____.三、解答题(5小题,每小题10分,共计50分)1、在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.

(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为________°.(2)如图2,若点F落在边BC上,且AB=CD=6,AD=BC=10,求CE的长.(3)如图3,若点E是CD的中点,AF的延长线交BC于点G,且AB=CD=6,AD=BC=10,求CG的长.2、在平面直角坐标系中,过A(0,4)的直线a垂直于y轴,点M(9,4)为直线a上一点,若点P从点M出发,以每秒2cm的速度沿直线a向左移动,点Q从原点同时出发,以每秒1cm的速度沿x轴向右移动,(1)几秒后PQ平行于y轴?(2)在点P、Q运动的过程中,若线段OQ=2AP,求点P的坐标.3、如图,在等腰三角形ABC中,AB=BC,将等腰三角形ABC绕顶点B按逆时针方向旋转角a到的位置,AB与相交于点D,AC与分别交于点E,F.(1)求证:BCF;(2)当C=a时,判定四边形的形状并说明理由.4、已知,在中,,,点D为BC的中点.(1)观察猜想如图①,若点E、F分别是AB、AC的中点,则线段DE与DF的数量关系是______________;线段DE与DF的位置关系是______________.(2)类比探究如图②,若点E、F分别是AB、AC上的点,且,上述结论是否仍然成立,若成立,请证明:若不成立,请说明理由;(3)解决问题如图③,若点E、F分别为AB、CA延长线的点,且,请直接写出的面积.

5、如图,正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点.试画出一个顶点都在格点上,且面积为10的正方形.-参考答案-一、单选题1、A【解析】【分析】如图,延长,交于点,证明,,再利用菱形的性质证明:阴影部分的周长,从而可得答案.【详解】解:如图,延长,交于点,四边形是平行四边形,,,四边形是菱形,,阴影部分的周长,故需要测量的长度,故选A.【点睛】本题考查的是平行四边形的性质,菱形的性质,证明阴影部分的周长是解本题的关键.2、C【解析】【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】∵CM、BN分别是高∴△CMB、△BNC均是直角三角形∵点P是BC的中点∴PM、PN分别是两个直角三角形斜边BC上的中线∴故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正确在Rt△ABN中,由勾股定理得:故③错误当∠ABC=60゜时,△ABC是等边三角形∵CM⊥AB,BN⊥AC∴M、N分别是AB、AC的中点∴MN是△ABC的中位线∴MN∥BC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.3、D【解析】【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当▱ABCD是矩形时,∠ABC=90°,正确,故A不符合题意;当▱ABCD是菱形时,AC⊥BD,正确,故B不符合题意;当▱ABCD是正方形时,AC=BD,正确,故C不符合题意;当▱ABCD是菱形时,AB=BC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.4、D【解析】【分析】如图(见解析),先根据平角的定义可得,再根据可求出,由此可判断选项;先根据等边三角形的判定与性质可得,再根据平行四边形的判定可得四边形是平行四边形,根据平行四边形的性质可得,然后根据菱形的判定可得四边形是菱形,根据菱形的性质可得,最后根据线段的和差、等量代换可得,由此可判断选项.【详解】解:如图,,,,,梯形是等腰梯形,,则梯形最大角是,选项B正确;没有指明哪个角是底角,梯形的底角是或,选项D错误;如图,连接,,是等边三角形,,,点共线,,,,四边形是平行四边形,,,,,,四边形是菱形,,,,选项A、C正确;故选:D.【点睛】本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性质是解题关键.5、B【解析】【分析】根据一个内角为60°可以判断较短的对角线与两邻边构成等边三角形,求出较长的对角线的一半,再乘以2即可得解.【详解】解:如图,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等边三角形,菱形的边长为6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形较长的对角线长BD是:2×3=6.故选:B.【点睛】本题考查了菱形的性质和勾股定理,等边三角形的判定,解题关键是熟练运用菱形的性质和等边三角形的判定求出对角线长.二、填空题1、【解析】【分析】设,由正方形的性质和勾股定理求出的长,可得的长,再求出的长,得出的长,进而可得结果.【详解】解:设,四边形为正方形,,,点为的中点,,,,,四边形为正方形,,,故答案为:.【点睛】本题考查了正方形的性质以及勾股定理,解题的关键是熟练掌握正方形的性质,由勾股定理求出的长.2、【解析】【分析】由正方形的对称性可知,PB=PD,当B、P、E共线时PD+PE最小,求出BE即可.【详解】解:∵正方形中B与D关于AC对称,∴PB=PD,∴PD+PE=PB+PE=BE,此时PD+PE最小,∵正方形ABCD的面积为18,△ABE是等边三角形,∴BE=3,∴PD+PE最小值是3,故答案为:3.【点睛】本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键.3、14【解析】【分析】过点作的垂线,交延长线于点,先根据正方形的性质、三角形全等的判定定理证出,根据全等三角形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质即可得出答案.【详解】解:如图,过点作的垂线,交延长线于点,四边形是正方形,,,,,,在和中,,,,,,又,,在和中,,,,故答案为:14.【点睛】本题考查了正方形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造全等三角形是解题关键.4、6【解析】【分析】过点D作DE⊥AB交y轴于点E,交BO于点P,得矩形ACPD,正方形OCPE,此时PC+PD的值最小.【详解】解:∵A(6,0),B(6,6),∴OA=AB=6,∴∠B=∠COP=45°,如图,过点D作DE⊥AB交y轴于点E,交BO于点P,∴∠PDA=∠DAC=∠PCA=90°,∴四边形ACPD是矩形,∴AC=DP,PC=AD,同理可得四边形OCPE是矩形,∵∠COP=45°,∴PC=OC,∴四边形OCPE是正方形,∵BD=AC=1,∴DP=BD=1,∴PC=AD=5,∴PC+PD=6,此时PC+PD的值最小,为6.故答案为:6.【点睛】本题考查了矩形的判定与性质,正方形的判定以及垂线段最短问题.5、【解析】【分析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB=1,A′B′∥AB,推出四边形A′B′CD是平行四边形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根据平移的性质得到点A′在过点A且平行于BD的定直线上,作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到结论.【详解】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,如图,过点D作DH⊥EC于H,∴,,∴,∴CE=2CH=,故答案为:.【点睛】本题考查了轴对称-最短路线问题,菱形的性质,平行四边形的判定和性质,含30度角的直角三角形的性质,平移的性质,正确地理解题意是解题的关键.三、解答题1、(1)18;(2)CE的长为;(3)CG的长为.【分析】(1)根据矩形的性质得∠DAC=36°,根据折叠的性质得∠DAE=18°;(2)根据矩形性质得∠B=∠C=90°,BC=AD=10,CD=AB=6,根据折叠的性质得AF=AD=10,EF=ED,根据勾股定理得BF=8,则CF=2,设CE=x,则EF=ED=6﹣x,根据勾股定理得,解得:,即CE的长为;(3)连接EG,,由题意得DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,则∠EFG=∠C=90°,由HL得Rt△CEG≌Rt△FEG,则CG=FG,设CG=FG=y,则AG=10+y,BG=10﹣y,在Rt△ABG中,由勾股定理得,解得,即CG的长为.【详解】解:(1)∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAC=90°-∠BAC=90°-54°=36°,∵△AED沿AE所在的直线折叠,使点D落在点F处,∴∠DAE=∠EAC=∠DAC=×36°=18°,故答案为:18;(2)∵四边形ABCD是长方形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折叠的性质得:AF=AD=10,EF=ED,∴,∴CF=BC﹣BF=10﹣8=2,设CE=x,则EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:,解得:,即CE的长为;(3)解:如图所示,连接EG,∵点E是CD的中点,∴DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=∠C=90°,在Rt△CEG和Rt△FEG中,,∴Rt△CEG≌Rt△FEG(HL),∴CG=FG,设CG=FG=y,则AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在Rt△ABG中,由勾股定理得:,解得:,即CG的长为.【点睛】本题考查了矩形的性质,折叠的性质,全等三角形的判定与性质,勾股定理,解题的关键是掌握并灵活运用这些知识点.2、(1)3秒后平行于轴;(2)或.【分析】(1)设秒后平行于轴,先求出的长,再根据矩形的判定与性质可得,由此建立方程,解方程即可得;(2)分①点在点右侧,②点在点左侧两种情况,分别根据建立方程,解方程即可得.【详解】解:(1),,设秒后平行于轴,,垂直于轴,垂直于轴,平行于轴,四边形是矩形,,即,解得,即3秒后平行于轴;(2)由题意得:经过秒后,,垂直于轴,点在直线上,且点的坐标为,点的纵坐标为4,①当点在点右侧时,,由得:,解得,,此时点的坐标为;②当点在点左侧时,,由得:,解得,,此时点的坐标为;综上,点的坐标为或.【点睛】本题考查了坐标与图形、矩形的判定与性质等知识点,较难的是题(2),正确分两种情况讨论是解题关键.3、(1)见解析;(2)菱形,见解析【分析】(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;

(2)由(1)可知∠=∠=∠A=∠C=a,B=B=AB=BC通过证明∠FBC=∠可得BC,利用∠EC=∠C=180°推出∠EC+∠=180°得到BCE从而证明四边形为平行四边形再利用B=BC可证明四边形为菱形.【详解】(1)证明:∵等腰三角形ABC旋转角a得到∴∠BD=∠FBC=a∠=∠=∠A=∠CB=B=AB=BC∴BCF(ASA)(2)解:四边形为菱形理由:∵C=a由(1)可知∠=∠=∠A=∠C=aB=B=AB=BC又∵∠BD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论