难点解析京改版数学8年级上册期末测试卷带答案详解_第1页
难点解析京改版数学8年级上册期末测试卷带答案详解_第2页
难点解析京改版数学8年级上册期末测试卷带答案详解_第3页
难点解析京改版数学8年级上册期末测试卷带答案详解_第4页
难点解析京改版数学8年级上册期末测试卷带答案详解_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

京改版数学8年级上册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、如图,已知,以两点为圆心,大于的长为半径画圆,两弧相交于点,连接与相较于点,则的周长为(

)A.8 B.10 C.11 D.132、能说明“锐角,锐角的和是锐角”是假命题的例证图是(

).A. B.C. D.3、分式化简后的结果为(

)A. B. C. D.4、若一个直角三角形的两边长为4和5,则第三边长为(

)A.3 B. C.8 D.3或5、如图,在中,,以各边为斜边分别向外作等腰、等腰、等腰,将等腰和等腰按如图方式叠放到等腰中,已知,,则长为(

)A.2 B. C.6 D.86、约分:(

)A. B. C. D.二、多选题(7小题,每小题2分,共计14分)1、下列不是真命题的是()A.如果a>b,a>c,那么b=cB.相等的角是对顶角C.一个角的补角大于这个角D.一个三角形中至少有两个锐角2、下列语句正确的是(

)A.数轴上的点仅能表示整数 B.数轴是一条直线C.数轴上的一个点只能表示一个数 D.数轴上找不到既表示正数又表示负数的点3、在下列分式中,不能再约分化简的分式有(

)A. B. C. D.4、下列变形不正确的是(

)A. B.C. D.5、如图,已知,下列结论正确的有()A. B. C. D.△≌△6、下列实数中的无理数是(

)A. B. C. D.7、下列各组数中,不互为相反数的是(

)A.-2与 B.∣∣与 C.与 D.与第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、等腰三角形的的两边分别为6和3,则它的第三边为______.2、如图,中,点D、点E分别在边、上,连结、,若,,且的周长比的周长大6.则的周长为______3、当x________时,分式有意义.4、如图,在平行四边形纸片中,,将纸片沿对角线对折,边与边交于点,此时恰为等边三角形,则重叠部分的面积为_________.5、如图,已知AC与BF相交于点E,ABCF,点E为BF中点,若CF=8,AD=5,则BD=_____.6、的有理化因式可以是______.(只需填一个)7、如图,BH是钝角三角形ABC的高,AD是角平分线,且2∠C=90°-∠ABH,若CD=4,ΔABC的面积为12,则AD=_____.四、解答题(6小题,每小题10分,共计60分)1、如图,点是线段上任意一点(点与点不重合),分别以为边在直线的同侧作等边和等边与相交于点与相交于点与相交于点.求证:(1);(2);(3)求的度数.2、如图,在中,点D为上一点,将沿翻折得到,与相交于点F,若平分,,.(1)求证:;(2)求的度数.3、解分式方程:.4、计算(1)(2)5、如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.(1)求证:AD垂直平分EF;(2)若AB+AC=10,S△ABC=15,求DE的长.6、如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B,C重合),连接AD,作∠ADE=40°,DE与AC交于E.(1)当∠BDA=115°时,∠BAD=°,∠DEC=°;当点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.-参考答案-一、单选题1、A【解析】【分析】利用基本作图得到MN垂直平分AB,利用线段垂直平分线的定义得到DA=DB,然后利用等线段代换得到△BDC的周长=AC+BC.【详解】由作法得MN垂直平分AB,∴DA=DB,∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=8.故选A.【考点】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.2、C【解析】【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案.【详解】解:A、如图1,∠1是锐角,且∠1=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意;B、如图2,∠2是锐角,且∠2=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意;C、如图3,∠3是钝角,且∠3=,所以此图说明“锐角,锐角的和是锐角”是假命题,故本选项符合题意;D、如图4,∠4是锐角,且∠4=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意.故选:C.【考点】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键.3、B【解析】【分析】根据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再根据同分母分式相加减的法则计算.【详解】解:故选:B.【考点】本题主要考查了分式的加减,熟练掌握分式通分的方法是解答本题的关键.4、D【解析】【分析】由于直角三角形的斜边不能确定,故应分5是直角边或5是斜边两种情况进行讨论.【详解】当5是直角边时,则第三边=;当5是斜边时,则第三边=.综上所述,第三边的长是或3.故选D.【考点】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5、D【解析】【分析】设AD=DB=a,AF=CF=b,BE=CE=c,由勾股定理可求a2+b2=c2,由,可求b=4,即可求解.【详解】解:设AD=DB=a,AF=CF=b,BE=CE=c,∴ABa,ACb,BCc,∵∠BAC=90°,∴AB2+AC2=BC2,∴2a2+2b2=2c2,∴a2+b2=c2,∵将等腰Rt△ADB和等腰Rt△AFC按如图方式叠放到等腰Rt△BEC,∴BG=GH=a,∵,∴(a+c)(c﹣a)=16,∴c2﹣a2=32,∴b2=32,∴b=4,∴ACb=8,故选:D.【考点】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键.6、A【解析】【分析】先进行乘法运算,然后约去分子分母的公因式即可得到答案.【详解】原式==,故选A.【考点】本题主要考查分式的乘法运算法则,掌握约分,是解题的关键.二、多选题1、ABC【解析】【分析】根据不等式的性质、对顶角的性质、三角形和补角的性质进行判断即可.【详解】解:A、如果a>b,a>c,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、一个三角形中至少有两个锐角,原命题是真命题;故选:ABC.【考点】本题考查了命题与定理的知识,解题的关键是了解不等式的性质、对顶角的性质、三角形和补角的性质,属于基础知识,难度不大.2、BC【解析】【分析】根据数轴上的点与实数一一对应,以及数轴的意义逐一分析可得答案.【详解】解:A、数轴上的点与实数一一对应,故原来的说法错误;B、数轴是一条直线的说法正确;C、数轴上的点与实数一一对应,故原来的说法正确;D、数轴上既不表示正数,又不表示负数的点是0,故原来的说法错误;故选:BC.【考点】本题考查了数轴,注意数轴上的点与实数一一对应.3、BC【解析】【分析】根据最简分式的定义:如果一个分式中没有可约的因式,则为最简分式,据此判断即可.【详解】解:A、,不是最简分式,可以再约分,不合题意;B、,是最简分式,不能再约分,符合题意;C、,是最简分式,不能再约分,符合题意;D、,不是最简分式,可以再约分,不合题意;故选:BC.【考点】本题考查了最简分式的概念,熟记定义是解本题的关键.4、ABC【解析】【分析】根据分式的基本性质求解即可,在分式的变形中,要注意符号法则,即分式的分子、分母及分式的符号,只有同时改变两个其值才不变.【详解】解:A.,故不正确;

B.,故不正确;C.,故不正确;D.,故正确;故选ABC.【考点】本题考查了分式的基本性质,把分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.5、ACD【解析】【分析】只要证明△ABE≌△ACF,△ANC≌△AMB,利用全等三角形的性质即可一一判断.【详解】解:在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴∠BAE=∠CAF,BE=CF,AB=AC,∴∠BAE−∠BAC=∠CAF−∠BAC,即∠1=∠2,∴,故C正确;在△ACN和△ABM中,,∴△ACN≌△ABM(ASA),故D正确;∴CN=BM.∵CF=BE,∴EM=FN,故A正确,CD与DN的大小无法确定,故B错误.故选:ACD.【考点】本题考查了全等三角形的判定与性质,熟记三角形全等的判定方法并准确识图,理清图中各角度之间的关系是解题的关键.6、BC【解析】【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选择项.【详解】解:A.,是有理数,不符合题意;B、,是无理数,符合题意;C、,是无理数,符合题意;D、,是有理数,不符合题意;故选BC.【考点】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像,等有这样规律的数.7、ABD【解析】【分析】先化简,然后根据相反数的意义进行判断即可得出答案.【详解】解:A.与不是一组相反数,故本选项符合题意;B.=,所以与不是一组相反数,故本选项符合题意;C.=2,=-2,所以与是一组相反数,故本选项不符合题意;D.=-2,=-2,所以与不是一组相反数,故本选项符合题意.故选ABD.【考点】本题考查了相反数,平方根,立方根等知识,能将各数化简并正确掌握相反数的概念是解题关键.三、填空题1、6【解析】【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:由题意得:当腰为3时,则第三边也为腰,为3,此时3+3=6.故以3,3,6不能构成三角形;当腰为6时,则第三边也为腰,为6,此时3+6>6,故以3,6,6可构成三角形.故答案为:6.【考点】本题考查了等腰三角形的定义和三角形的三边关系,已知条件没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.2、12【解析】【分析】设AC=4a,AB=6a,BC=8a,根据全等三角形的性质得到AD=BD,AE=BE,再设AE=BE=x,则EC=8a-x,由题意得方程18a-12a=6,即可求解.【详解】解:∵AC:AB:BC=2:3:4,∴设AC=4a,AB=6a,BC=8a,∵△ADE≌△BDE,∴AD=BD,AE=BE,再设AE=BE=x,则EC=8a-x,△ABC的周长=AC+AB+BC=4a+6a+8a=18a,△AEC的周长=AC+AE+EC=4a+x+8a-x=12a,由题意得:18a-12a=6,解得:a=1,∴△AEC的周长为12,故答案为:12.【考点】本题考查了全等三角形的性质,解一元一次方程,正确的识别图形是解题的关键.3、.【解析】【分析】分母不为零时,分式有意义.【详解】当2x﹣1≠0,即x时,分式有意义.故答案为.【考点】本题考点:分式有意义.4、【解析】【分析】首先根据等边三角形的性质可得AB'=AE=EB',∠B'=∠B'EA=60°,根据折叠的性质,∠BCA=∠B'CA,,再证明∠B'AC=90°,再证得S△AEC=S△AEB',再求S△AB'C进而可得答案.【详解】解:∵为等边三角形,∴AB'=AE=EB',∠B'=∠B'EA=60°,根据折叠的性质,∠BCA=∠B'CA,∵四边形ABCD是平行四边形,∴AD//BC,AD=BC,AB=CD,∴∠B'EA=∠B'CB,∠EAC=∠BCA,∴∠ECA=∠BCA=30°,∴∠EAC=30°,∴∠B'AC=90°,∵,∴B'C=8,∴AC==,∵B'E=AE=EC,∴S△AEC=S△AEB'=S△AB'C=××4×=,故答案为.【考点】此题主要考查了平行四边形的性质、直角三角形的性质以及翻折变换,关键是掌握平行四边形的对边平行且相等,直角三角形30°角所对的边等于斜边的一半.5、3【解析】【分析】利用全等三角形的判定定理和性质定理可得结果.【详解】解:∵AB∥CF,∴∠A=∠FCE,∠B=∠F,∵点E为BF中点,∴BE=FE,在△ABE与△CFE中,,∴△ABE≌△CFE(AAS),∴AB=CF=8,∵AD=5,∴BD=3,故答案为:3.【考点】本题主要考查了全等三角形的判定定理和性质定理,熟练掌握定理是解答此题的关键.6、【解析】【分析】根据平方差公式和有理化因式的意义即可得出答案.【详解】解:,的有理化因式为,故答案为:.【考点】本题考查分母有理化,理解有理化因式的意义和平方差公式是正确解答的关键.7、3【解析】【分析】根据三角形的外角性质和已知条件易证明∠ABC=∠C,则可判断△ABC为等腰三角形,然后根据等腰三角形的性质可得AD⊥BC,BD=CD=4,再利用三角形面积公式即可求出AD的长.【详解】解:∵BH为△ABC的高,∴∠AHB=90°,∴∠BAH=90°﹣∠ABH,而2∠C=90°﹣∠ABH,∴∠BAH=2∠C,∵∠BAH=∠C+∠ABC,∴∠ABC=∠C,∴△ABC为等腰三角形,∵AD是角平分线,∴AD⊥BC,BD=CD=4,∵ΔABC的面积为12,∴×AD×BC=12,即×AD×8=12,∴AD=3.故答案为:3.【考点】本题考查了三角形的外角性质、等腰三角形的判定和性质以及三角形的面积,熟练掌握上述知识是解题的关键.四、解答题1、(1)见解析;(2)见解析;(3).【解析】【分析】(1)根据等边三角形的性质及SAS即可证明;(2)根据全等三角形的性质证明为等边三角形,得到,即可根据平行线的判定求解;(3)先求得,过点作于点,于点,证明,根据角平分线的判定与性质即可求解.【详解】(1)∵和为等边三角形,∴,,.又,,而,∴.∴.(2)由,得到;又∠ACM=∠BCN=∠DCN=60°,∴,得到.∵,∴为等边三角形,∴,∴.(3)由,∴,过点作于点,于点.∵,∴,,∴,∴,从而平分.∴.【考点】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的方法、角平分线的判定与性质.2、(1)证明见解析;(2).【解析】【分析】(1)利用三角形内角和定理求出,再利用折叠和角平分线的性质证明,即可证明;(2)利用三角形内角和定理求出,再利用对顶角相等证明,再利用三角形内角和定理即可求出.(1)证明:∵,,∴,∵AE平分,∴,∵,∴,∴,∴,(2)解:,∴,∵,且,∴.【考点】本题考查三角形内角和定理,折叠的性质,角平分线的性质,对顶角相等,(1)的关键是求出,证明;(2)的关键是求出.3、【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】方程,,,,经检验是分式方程的解,∴原分式方程的解为.【考点】本题考查了解分式方程.利用了转化的思想,解分式方程要注意检验.4、(1);(2)0【解析】【分析】(1)先算乘除并化简,再算加减法;(2)先利用平方差公式计算,再作加减法.【详解】解:(1)===;(2)==0【考点】本题考查了二次根式的混合运算,解题的关键是掌握运算法则.5、(1)见解析;(2)【解析】【分析】(1)由角平分线的性质得DE=DF,再根据HL证明Rt△AED≌Rt△AFD,得AE=AF,从而证明结论;(2)根据DE=DF,得,代入计算即可.【详解】(1)证明:∵AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,∴DE=DF,在Rt△AED与Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵DE=DF,∴AD垂直平分EF;(2)解:∵DE=DF,∴,∵AB+AC=10,∴DE=3.【考点】本题考查了全等三角形的判定与性质,角平分线的性质,解题的关键是掌握这

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论