辽宁省东港市中考数学考点攻克新版附答案详解_第1页
辽宁省东港市中考数学考点攻克新版附答案详解_第2页
辽宁省东港市中考数学考点攻克新版附答案详解_第3页
辽宁省东港市中考数学考点攻克新版附答案详解_第4页
辽宁省东港市中考数学考点攻克新版附答案详解_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省东港市中考数学考点攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、由二次函数,可知(

)A.其图象的开口向下 B.其图象的对称轴为直线x=-3C.其最小值为1 D.当x<3时,y随x的增大而增大2、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是(

)A. B.C. D.3、下列关于随机事件的概率描述正确的是()A.抛掷一枚质地均匀的硬币出现“正面朝上”的概率为0.5,所以抛掷1000次就一定有500次“正面朝上”B.某种彩票的中奖率为5%,说明买100张彩票有5张会中奖C.随机事件发生的概率大于或等于0,小于或等于1D.在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率4、下面的图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.5、2019年女排世界杯于9月在日本举行,中国女排以十一连胜的骄人成绩卫冕冠军,充分展现了团队协作、顽强拼搏的女排精神.如图是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作拋物线,在同一竖直平面内建立如图所示的直角坐标系,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点)距球网的水平距离为2.5米,则排球运动路线的函数表达式为(

)A. B.C. D.二、多选题(5小题,每小题3分,共计15分)1、二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论中正确的有()A.4a+b=0B.9a+c>﹣3bC.7a﹣3b+2c>0D.若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2E.若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x22、对于实数a,b,定义运算“※”:,例如:4※2,因为,所以,若函数,则下列结论正确的是(

)A.方程的解为,;B.当时,y随x的增大而增大;C.若关于x的方程有三个解,则;D.当时,函数的最大值为1.3、下表中列出的是一个二次函数的自变量与函数的几组对应值:…013……6…下列各选项中,正确的是(

)A.函数图象的开口向下 B.当时,的值随的增大而增大C.函数的图象与轴无交点 D.这个函数的最小值小于4、古希腊数学家欧几里得在《几何原本》中记载了用尺规作某种六边形的方法,其步骤是:①在⊙O上任取一点A,连接AO并延长交⊙O于点B;②以点B为圆心,BO为半径作圆弧分别交⊙O于C,D两点;③连接CO,DO并延长分别交⊙O于点E,F;④顺次连接BC,CF,FA,AE,ED,DB,得到六边形AFCBDE.连接AD,EF,交于点G,则下列结论正确的是.A.△AOE的内心与外心都是点G B.∠FGA=∠FOAC.点G是线段EF的三等分点 D.EF=AF5、下列关于圆的叙述正确的有()A.对角互补的四边形是圆内接四边形B.圆的切线垂直于圆的半径C.正多边形中心角的度数等于这个正多边形一个外角的度数D.过圆外一点所画的圆的两条切线长相等第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、不透明的袋子里装有一个黑球,两个红球,这些球除颜色外无其它差别,从袋子中取出一个球,不放回,再取出一个球,记下颜色,两次摸出的球是一红—黑的概率是________.2、在平面直角坐标系中,已知和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为_____.3、如图,在⊙O中,=,AB=10,BC=12,D是上一点,CD=5,则AD的长为______.4、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分的面积为_____.5、如图,AB为的弦,半径于点C.若,,则的半径长为______.四、简答题(2小题,每小题10分,共计20分)1、如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E(1)求证:AC是⊙O的切线;(2)若OB=2,CD=,求图中阴影部分的面积(结果保留).2、在矩形中,于点,点是边上一点.(1)若平分,交于点,PF⊥BD,如图(1),证明四边形是菱形;(2)若,如图(2),求证:.五、解答题(4小题,每小题10分,共计40分)1、某省高考采用“3+1+2”模式:“3”是指语文、数学、英语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在思想政治、化学、生物、地理4科中任选2科.(1)假定在“1”中选择历史,在“2”中已选择地理,则选择生物的概率是________;(2)求同时选择物理、化学、生物的概率.2、如图,等腰直角三角形,,,延长至E,使得,以为直角边作,,.(1)若以每秒1个单位的速度沿向右运动,当点E到达点C时停止运动,直接写出在运动过程中与重叠部分面积S与运动时间t(单位:秒)的函数关系式;(2)点M为线段的中点,当(1)中的顶点E运动到点C后,将绕着点C继续顺时针旋转得到,点P是直线上一动点,连接,求的最小值.3、如图,AB是的直径,CD是的一条弦,且于点E.(1)求证:;(2)若,,求的半径.4、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与⊙O相切?-参考答案-一、单选题1、C【解析】【分析】根据二次函数的性质,直接根据的值得出开口方向,再利用顶点坐标的对称轴和增减性,分别分析即可.【详解】解:由二次函数,可知:.,其图象的开口向上,故此选项错误;.其图象的对称轴为直线,故此选项错误;.其最小值为1,故此选项正确;.当时,随的增大而减小,故此选项错误.故选:.【考点】此题主要考查了二次函数的性质,同学们应根据题意熟练地应用二次函数性质,这是中考中考查重点知识.2、B【解析】【分析】由题意可知,每个同学需赠送出(x-1)件标本,x名同学需赠送出x(x-1)件标本,即可列出方程.【详解】解:由题意可得,x(x-1)=182,故选B.【考点】本题主要考查了一元二次方程的应用,审清题意、确定等量关系是解答本题的关键.3、D【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【详解】解:概率反映的是随机性的规律,但每次试验出现的结果具有不确定,故选项A、B错误;随机事件发生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故选项C错误;在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率,故选项D正确;故选:D.【点睛】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、A【详解】解:A、既是轴对称图形又是中心对称图形,此项符合题意;B、是中心对称图形,不是轴对称图形,此项不符题意;C、是轴对称图形,不是中心对称图形,此项不符题意;D、是轴对称图形,不是中心对称图形,此项不符题意;故选:A.【点睛】本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.5、A【解析】【分析】由题意可知点A坐标为(-5,0.5),点B坐标为(0,2.5),点C坐标为(2.5,0),设排球运动路线的函数表达式为:y=ax2+bx+c,将点A、B、C的坐标代入得关于a、b、c的三元一次方程组,解得a、b、c的值,则函数解析式可得,从而问题得解.【详解】解:由题意可知点A坐标为(-5,0.5),点B坐标为(0,2.5),点C坐标为(2.5,0)设排球运动路线的函数解析式为:y=ax2+bx+c,∵排球经过A、B、C三点,,解得:,∴排球运动路线的函数解析式为,故选:A.【考点】本题考查了根据实际问题列二次函数关系式并求得关系式,数形结合并明确二次函数的一般式是解题的关键.二、多选题1、ABE【解析】【分析】根据抛物线的对称轴为直线x=2,则有4a+b=0,可得A正确;根据二次函数的对称性得到当x=3时,函数值大于0,则9a+3b+c>0,即9a+c>﹣3b,可得B正确;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以7a-3b+2c=9a,再根据抛物线开口向下得a<0,于是有7a﹣3b+2c<0,可得C错误;利用抛物线的对称性得到(﹣3,)在抛物线上,然后利用二次函数的增减性可得D错误;作出直线y=﹣3,然后依据函数图象进行判断可得E正确;综上即可得答案.【详解】A项:∵x==2,∴4a+b=0,故A正确.B项:∵抛物线与x轴的一个交点为(-1,0),对称轴为直线x=2,∴另一个交点为(5,0),∵抛物线开口向下,∴当x=3时,y>0,即9a+3b+c>0,∴9a+c>﹣3b,故B正确.C项:∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0∵b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴7a﹣3b+2c=7a+12a﹣10a=9a,∵抛物线开口向下,∴a<0,∴7a﹣3b+2c<0,故C错误;D项:∵抛物线的对称轴为x=2,C(7,)在抛物线上,∴点(﹣3,)与C(7,)关于对称轴x=2对称,∵A(﹣3,)在抛物线上,∴=,∵﹣3<﹣12,在对称轴的左侧,抛物线开口向下,∴y随x的增大而增大,∴=<,故D错误.E项:方程a(x+1)(x﹣5)=0的两根为x=﹣1或x=5,过y=﹣3作x轴的平行线,直线y=﹣3与抛物线的交点的横坐标为方程的两根,∵<,抛物线与x轴交点为(-1,0),(5,0),∴依据函数图象可知:<﹣1<5<,故E正确.故答案为:ABE【考点】本题考查了二次函数图象与系数的关系:二次函数y=ax²+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b²﹣4ac>0时,抛物线与x轴有2个交点;△=b²﹣4ac=0时,抛物线与x轴有1个交点;△=b²﹣4ac<0时,抛物线与x轴没有交点.2、ABD【解析】【分析】根据题干定义求出y=(2x)※(x+1)的解析式,根据2x≥x+1及2x<x+1可得x≥1时y=2x2﹣2x,x<1时,y=﹣x2+1,进而求解.【详解】解:根据题意得:当2x≥x+1,即x≥1时,y=(2x)2﹣2x(x+1)=2x2﹣2x,当2x<x+1,即x<1时,y=(x+1)2﹣2x(x+1)=﹣x2+1,∴当x≥1时,2x2﹣2x=0,解得x=0(舍去)或x=1,当x<1时,﹣x2+1=0,解得x=1(舍去)或x=﹣1,∴(2x)※(x+1)=0的解是x1=﹣1,x2=1;故A正确,B、当x>1时,y=2x2﹣2x,抛物线开口向上,对称轴是直线x=,∴x>1时,y随x的增大而增大,∴B选项正确.当x≥1时,y=2x2﹣2x=2(x﹣)2﹣,∴x=1时,y取最小值为y=0,当x<1时,y=﹣x2+1=0,当x=0时,y取最大值为y=1,如图,当0<m<1时,方程(2x)※(x+1)=m有三个解,∴选项C错误,选项D正确.故答案为:ABD.【考点】本题考查二次函数的新定义问题,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系.3、BD【解析】【分析】根据抛物线经过点(0,-4),(3,-4)可得抛物线对称轴为直线,由抛物线经过点(-2,6)可得抛物线开口向上,进而求解.【详解】解:∵抛物线经过点(0,-4),(3,-4),∴抛物线对称轴为直线,∵抛物线经过点(-2,6),∴当x<时,y随x增大而减小,∴抛物线开口向上,且跟x轴有交点,故A,C错误,不符合题意;∴x>时,y随x增大而增大,故B正确,符合题意;由对称性可知,在处取得最小值,且最小值小于-6.故D正确,符合题意.故选:BD.【考点】本题考查二次函数的图象与性质,解题关键是掌握二次函数与方程的关系.4、ABC【解析】【分析】证明△AOE是等边三角形,EF⊥OA,AD⊥OE,可判断A;.证明∠AGF=∠AOF=60°,可判断B;证明FG=2GE,可判断C;证明EF=AF,可判断D.【详解】解:如图,在正六边形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等边三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四边形AEOF,四边形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的内心与外心都是点G,故A正确,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正确,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴点G是线段EF的三等分点,故C正确,∵AF=AE,∠FAE=120°,∴EF=AF,故D错误,故答案为:ABC.【考点】本题考查作图-复杂作图,等边三角形的判定和性质,菱形的判定和性质,三角形的内心,外心等知识,解题的关键是证明四边形AEOF,四边形AODE都是菱形.5、ACD【解析】【分析】根据圆内接四边形性质直接可判断A选项正确;利用切线的性质可判断B选项错误;根据正多边形中心角的定义和多边形外角和可对判断C选项正确;根据切线长定理可判断D选项正确.【详解】A.由圆内接四边形定义得:对角互补的四边形是圆内接四边形,A选项正确;B.圆的切线垂直于过切点的半径,B选项错误;C.正多边形中心角的度数等于这个正多边形一个外角的度数,都等于,C选项正确;D.过圆外一点引的圆的两条切线,则切线长相等,D选项正确.故选:ACD.【考点】本题考查了正多边形与圆、切线的性质和确定圆的条件,解题关键是熟练掌握有关的概念.三、填空题1、【分析】根据题意列出表格,可得6种等可能结果,其中一红—黑的有4种,再利用概率公式,即可求解.【详解】解:根据题意列出表格如下:黑球红球1红球2黑球红球1、黑球红球2、黑球红球1黑球、红球1红球2、红球1红球2黑球、红球2红球1、红球2得到6种等可能结果,其中一红—黑的有4种,所以两次摸出的球是一红—黑的概率是.故答案为:【点睛】本题主要考查了求概率,能够利用画树状图或列表格的方法解答是解题的关键.2、4【解析】【分析】通过A、B两点得出对称轴,再根据对称轴公式算出b,由此可得出二次函数表达式,从而算出最小值即可推出n的最小值.【详解】∵A、B的纵坐标一样,∴A、B是对称的两点,∴对称轴,即,∴b=-4.∴抛物线解析式为:.∴抛物线顶点(2,-3).∴满足题意n的最小值为4,故答案为:4.【考点】本题考查二次函数对称轴的性质,顶点式的变形及抛物线的平移,关键在于根据对称轴的性质从题意中判断出对称轴.3、3【分析】过A作AE⊥BC于E,过C作CF⊥AD于F,根据圆周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明△ABE∽△CDF,由相似三角形的性质和勾股定理分别求得AE、DF、CF,AF即可求解.【详解】解:过A作AE⊥BC于E,过C作CF⊥AD于F,则∠AEB=∠CFD=90°,∵=,AB=10,∴∠ACB=∠B=∠D,AB=AC=10,∵AE⊥BC,BC=12,∴BE=CE=6,∴,∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDF,∴,∵AB=10,CD=5,BE=6,AE=8,∴,解得:DF=3,CF=4,在Rt△AFC中,∠AFC=90°,AC=10,CF=4,则,∴AD=DF+AF=3+2,故答案为:3+2.【点睛】本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键.4、【分析】利用勾股定理求出AC及AB的长,根据阴影面积等于求出答案.【详解】解:由旋转得,,=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB=,,∴阴影部分的面积==,故答案为:..【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.5、5【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,再连接OA,在Rt△OAC中利用勾股定理求出r的值即可.【详解】解:∵⊙O的弦AB=8,半径OD⊥AB,∴AC=AB=×8=4,设⊙O的半径为r,则OC=r-CD=r-2,连接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5.故答案为:5【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.四、简答题1、(1)见解析;(2)【解析】【分析】(1)欲证明AC是⊙O的切线,只要证明OD⊥AC即可.(2)证明△OBE是等边三角形即可解决问题.【详解】(1)证明:连接OD,如图,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴OD⊥AC,∴AC是⊙O的切线.(2)过O作OG⊥BC,连接OE,则四边形ODCG为矩形,∴GC=OD=OB=2,OG=CD=,在Rt△OBG中,利用勾股定理得:BG=1,∴BE=2,则△OBE是等边三角形,∴阴影部分面积为﹣×2×=.【考点】本题考查切线的判定和性质,等边三角形的判定和性质,思想的面积公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、(1)见解析;(2)见解析【解析】【分析】(1)想办法证明AG=PF,AG∥PF,推出四边形AGFP是平行四边形,再证明PA=PF即可解决问题.(2)证明△AEP∽△DEC,可得,由此即可解决问题.【详解】解:(1)∵平分,,,∴,,又∵在中,,在中,∴,又∵,∴,∴,∴,∵,,∴AG∥PF,∴四边形是平行四边形,∴四边形AGFP是菱形;(2)∵,,∴,,∴,又∵,,∴,∴,∴,∴,又∵,∴.【考点】本题主要考查了角平分线的性质,菱形的判定,相似三角形的性质与判定,矩形的性质,解题的关键在于能够熟练掌握相关知识进行求解.五、解答题1、(1)(2)【分析】(1)直接根据概率公式即可得出答案;(2)根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.(1)解:在“2”中已选择了地理,从剩下的化学、生物,思想品德三科中选一科,因此选择生物的概率为.故答案为:;(2)解:用树状图表示所有可能出现的结果如下:共有12种等可能的结果数,其中选中“化学”“生物”的有2种,则.在“1”中选择物理的概率,同时选择物理、化学、生物的概率.故答案为:.【点睛】本题考查的是用列表法或树状图法求概率,解题的关键是掌握列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.2、(1)(2)【分析】(1)根据运动重合部分不同情况分四种情况讨论,①当时,②当时,③当时,④当时,根据三角形的面积公式求函数解析式即可.(2)作关于的对称点,连接,过点作于点,过点作于点,设交于点,交于点,则的最小值即为的长,进而解直角三角形,即可求得的长,即的最小值(1)等腰直角三角形,,,,在,,①当时,如图,重叠部分面积为,设交于点,过点作于点,以每秒1个单位的速度沿向右运动,设,则在,,即解得②当时,如图,重叠部分面积为四边形的面积,设交于点,过点作于点,设交于点,,③当时,此时重叠面积为④当时,如图,设交于点,此时重叠面积为四边形的面积,,综上所述,(2)如图,作关于的对称点,连接,过点作于点,过点作于点,设交于点,交于点,则在中,则的最小值即为的长在中,设,,则中,为的中点,则,即的最小值为【点睛】本题考查了动点的函数问题,解直角三角形,(1)分类讨论,(2)转化线段是解题的关键.3、(1)见解析;(2)3【分析】(1)根据∠D=∠B,∠BCO=∠B,代换证明;(2)根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论