




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
冀教版8年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点O为BD的中点,过点A作AE⊥BC交CB的延长线于点E,连接OE,则线段OE的长度是()A.3cm B.4cm C.4.8cm D.5cm2、下面调查统计中,适合采用普查方式的是()A.华为手机的市场占有率 B.“现代”汽车每百公里的耗油量C.“国家宝藏”专栏电视节目的收视率 D.乘坐飞机的旅客是否携带了违禁物品3、如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=150°;④S四边形AEFD=8.错误的个数是()A.1个 B.2个 C.3个 D.4个4、要了解我市初中学生完成课后作业所用的时间,下列抽样最适合的是()A.随机选取城区6所初中学校的所有学生B.随机选取城区与农村各3所初中学校所有女生C.随机选取我市初中学校三个年级各1000名学生D.随机选取我市初中学校中七年级5000名学生5、2021年我市有52000名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.52000名考生是总体 B.1000名考生是总体的一个样本C.1000名考生是样本容量 D.每位考生的数学成绩是个体6、在平面直角坐标系中,所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7、点A(-1,y1),B(3,y2)是一次函数y=(m2+1)x-1图像上的两点,则y1与y2的大小关系为()A.y1<y2 B.y1=y2 C.y1>y2 D.无法判断第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、若表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为_________.2、将直线向下平移4个单位后,所得直线的表达式是______.3、如图,四边形是菱形,与相交于点,添加一个条件:________,可使它成为正方形.4、如图,在平行四边形ABCD中,∠D=100°,AC为对角线,将△ACD绕点A顺时针旋转一定的角度后得到△AEF,使点D的对应点E落在边AB上,若点C的对应点F落在边CB的延长线上,则∠EFB的度数为___.5、已知直角坐标平面内的两点分别为A(2,﹣3)、B(5,6),那么A、B两点的距离等于______.6、当光线射到x轴进行反射,如果反射的路径经过点A(0,1)和点B(3,4),则入射光线所在直线的解析式为____________.7、某工厂有甲、乙、丙、丁四个不同的车间生产电子元件,由于生产设备不同,工人在不同车间日生产量也不一定相同,但皆为整数.某日,该工厂接到一批生产订单,工厂老板想将工人合理分配到不同车间,已知甲车间的工人数与乙车间相同,丙车间的工人数是丁车间的倍且比甲车间工人数多,甲车间与丁车间的工人数之和不少于人且不超过人;甲车间与丁车间每个工人的日生产量相同,乙车间每个工人的日生产量为丙车间每个工人日生产量的倍,甲车间与丙车间每个工人的日生产量之和为件,且甲车间每个工人的日生产量不低于丙车间每个工人日生产量的且不超过件;甲车间、丙车间的日生产之和比乙车间、丁车间的日生产之和少件.则当甲、丙两车间当日生产量之和最多时,该工厂调配前往甲车间的人数为__________人.8、如图,已知A、B、C三点的坐标分别是、、,过点C作直线轴,若点P为直线l上一个动点,且的面积为5,则点P的坐标是______.三、解答题(7小题,每小题10分,共计70分)1、在一定弹性限度内,弹簧挂上物体后会伸长.现测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(已知在弹性限度内该弹簧悬挂物体后的最大长度为21cm.)所挂物体质量x/kg0123456弹簧长度y/cm1212.51313.51414.515(1)有下列说法:①x与y都是变量,且x是自变量,y是x的函数;②所挂物体质量为6kg时,弹簧伸长了3cm;③弹簧不挂重物时的长度为6cm;④物体质量每增加1kg,弹簧长度y增加0.5cm.上述说法中错误的是(填序号)(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式及自变量的取值范围.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量.2、如图,在△ABC中,AC=2,AB=4,BC=6,点P为边BC上的一个动点(不与点B、C重合),点P关于直线AB的对称点为点Q,联结PQ、CQ,PQ与边AB交于点D.(1)求∠B的度数;(2)联结BQ,当∠BQC=90°时,求CQ的长;(3)设BP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域.3、已知A、B两地相距3km,甲骑车匀速从A地前往B地,如图表示甲骑车过程中离A地的路程y甲(km)与他行驶所用的时间x(min)之间的关系.根据图像解答下列问题:(1)甲骑车的速度是km/min;(2)若在甲出发时,乙在甲前方1.2km的C处,两人均沿同一路线同时匀速出发前往B地,在第4分钟甲追上了乙,两人到达B地后停止.请在下面同一平面直角坐标系中画出乙离B地的距离y乙(km)与所用时间x(min)的关系的大致图像;(3)在(2)的条件下,求出两个函数图像的交点坐标,并解释它的实际意义.4、如图,已知直线y=﹣x+3与x轴、y轴分别相交于点A、B,将△AOB沿直线CD折叠,使点A与点B重合.折痕CD与x轴交于点C,与AB交于点D.(1)点A的坐标为,点B的坐标为;(2)求OC的长度,并求出此时直线BC的表达式;(3)过点B作直线BP与x轴交于点P,且使OP=OA,求△ABP的面积.5、如图,平面直角坐标系中有点A(-1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角ABC,设点C的坐标为(c,d).(1)当a=2时,则C点的坐标为;(2)动点B在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.6、已知一次函数y=-x+2.(1)求这个函数的图像与两条坐标轴的交点坐标;(2)在平面直角坐标系中画出这个函数的图像;(3)结合函数图像回答问题:①当x>0时,y的取值范围是;②当y<0时,x的取值范围是.7、为了贯彻落实市委市政府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A,B两贫困村的计划.现决定从某地运送168箱小鸡到A,B两村养殖,若用大、小货车共18辆,则恰好能一次性运完这批小鸡,已知这两种大、小货车的载货能力分别为10箱/辆和8箱/辆,其运往A、B两村的运费如下表:目的地车型A村(元/辆)B村(元/辆)大货车8090小货车4060(1)试求这18辆车中大、小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往4村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数表达式,并直接写出自变量取值范围;(3)在(2)的条件下,若运往A村的小鸡不少于96箱,请你写出使总费用最少的货车调配方案,并求出最少费用.-参考答案-一、单选题1、B【解析】【分析】由菱形的性质得出BD=6cm,由菱形的面积得出AC=8cm,再由直角三角形斜边上的中线等于斜边的一半即可得出结果.【详解】解:∵四边形ABCD是菱形,∴BD⊥AC,∵BD=6cm,S菱形ABCD═AC×BD=24cm2,∴AC=8cm,∵AE⊥BC,∴∠AEC=90°,∴OE=AC=4cm,故选:B.【点睛】本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.2、D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、对华为手机的市场占有率的调查范围广,适合抽样调查,故此选项不符合题意;B、对“现代”汽车每百公里的耗油量的调查范围广适合抽样调查,故此选项不符合题意;C、对“国家宝藏”专栏电视节目的收视率的调查范围广,适合抽样调查,故此选项不符合题意;D、对乘坐飞机的旅客是否携带了违禁物品的调查情况适合普查,故此选项符合题意;故选:D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、A【解析】【分析】利用勾股定理逆定理证得△ABC是直角三角形,由此判断①;证明△ABC≌△DBF得到DF=AE,同理可证:△ABC≌△EFC,得到EF=AD,由此判断②;由②可判断③;过A作AG⊥DF于G,求出AG即可求出S▱AEFD,判断④.【详解】解:∵AB=3,AC=4,32+42=52,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∴AB⊥AC,故①正确;∵△ABD,△ACE都是等边三角形,∴∠DAB=∠EAC=60°,∴∠DAE=150°,∵△ABD和△FBC都是等边三角形,∴BD=BA,BF=BC,∴∠DBF=∠ABC,在△ABC与△DBF中,,∴△ABC≌△DBF(SAS),∴AC=DF=AE=4,同理可证:△ABC≌△EFC(SAS),∴AB=EF=AD=3,∴四边形AEFD是平行四边形,故②正确;∴∠DFE=∠DAE=150°,故③正确;过A作AG⊥DF于G,如图所示:则∠AGD=90°,∵四边形AEFD是平行四边形,∴∠FDA=180°﹣∠DFE=180°﹣150°=30°,∴AG=AD=,∴S▱AEFD=DF•AG=4×=6;故④错误;∴错误的个数是1个,故选:A..【点睛】此题考查了等边三角形的性质,勾股定理的逆定理,全等三角形的判定及性质,平行四边形的判定及性质,直角三角形的30度角的性质,熟练掌握各知识点是解题的关键.4、C【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A、随机选取城区6所初中学校的所有学生,不具有代表性,故选项不符合题意;B、随机选取城区与农村各3所初中学校所有女生,不具有代表性,故选项不符合题意;C、随机选取我市初中学校三个年级各1000名学生,具有代表性,故选项符合题意;D、随机选取我市初中学校中七年级5000名学生,不具有代表性,故选项不符合题意;故选:C.【点睛】本题主要考查抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.5、D【解析】【分析】根据总体、样本、样本容量、样本个体的定义,对各个选项进行判断即可.【详解】解:由题意知:52000名考生的数学成绩是总体,A说法错误,故不符合要求;1000名考生的数学成绩是总体的一个样本,B说法错误,故不符合要求;1000是样本容量,C说法错误,故不符合要求;每位考生的数学成绩是个体,D说法正确,故符合要求;故选D.【点睛】本题考查了总体、样本、样本容量、样本个体的定义.解题的关键在于把握各名词的区别.6、D【解析】【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:∵点的横坐标3>0,纵坐标-4<0,∴点P(3,-4)在第四象限.故选:D.【点睛】本题考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、A【解析】【分析】结合题意,得一次函数y=(m2+1)x-1,随x的增大而增大,根据函数的递增性分析,即可得到答案.【详解】∵∴一次函数y=(m2+1)x-1,随x的增大而增大∵∴故选:A.【点睛】本题考查了一次函数的知识;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.二、填空题1、【解析】【分析】由表示教室里第1列第2排的位置,可得教室里第2列第3排的位置的表示方法,从而可得答案.【详解】解:表示教室里第1列第2排的位置,教室里第2列第3排的位置表示为:故答案为:【点睛】本题考查的是利用有序实数对表示位置,理解题意,理解有序实数对的含义是解本题的关键.2、【解析】【分析】根据直线向下平移4个单位,可得平移后的直线的表达式为,即可求解.【详解】解:将直线向下平移4个单位后,所得直线的表达式是.故答案为:【点睛】本题主要考查了一次函数图象的平移,熟练掌握一次函数图象向上平移个单位后得到;向下平移个单位后得到是解题的关键.3、【解析】【分析】根据“有一个角是直角的菱形是正方形”可得到添加的条件.【详解】解:由于四边形是菱形,如果,那么四边形是正方形.故答案为:.【点睛】本题考查了正方形的判定,解决本题的关键是熟练掌握正方形的判定定理.4、20°##20度【解析】【分析】根据平行四边形ABCD性质求出∠DAB=180°-∠D=80°,根据△ACD绕点A顺时针旋转一定的角度后得到△AEF,得出AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,利用等腰三角形性质求出∠AFC=∠ACF=,根据平行线性质∠DAC=∠ACF=50°,利用三角形内角和求出∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°即可.【详解】解:在平行四边形ABCD中,∠D=100°,∴∠DAB=180°-∠D=80°,∵△ACD绕点A顺时针旋转一定的角度后得到△AEF,∴AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,∴∠FAC=∠FAE+∠BAC=∠CAD+∠BAC=∠BAD=80°∴∠AFC=∠ACF=∵AD∥BC,∴∠DAC=∠ACF=50°,∴∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°,∴∠AFE=∠ACD=30°,∴∠EFB=∠AFC-∠AFE=50°-30°=20°,故答案为20°.【点睛】本题考查平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和,掌握平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和是解题关键.5、【解析】【分析】根据两点,利用勾股定理进行求解.【详解】解:在平面直角坐标系中描出、,分别过作平行于的线交于点,如图:的横坐标与的横坐标相同,的纵坐标与的纵坐标相同,,,,,故答案为:.【点睛】本题考查的是勾股定理,坐标与图形性质,解题的关键是掌握如果直角三角形的两条直角边长分别是,,斜边长为,那么.6、【解析】【分析】根据题意得:入射光线所在直线和反射光线所在直线关于轴对称,可得入射光线所在直线经过点A(0,-1)和点B(3,-4),即可求解.【详解】解:根据题意得:入射光线所在直线和反射光线所在直线关于轴对称,∵反射的路径经过点A(0,1)和点B(3,4),∴入射光线所在直线经过点A(0,-1)和点B(3,-4),设入射光线所在直线的解析式为,根据题意得:,解得:,∴入射光线所在直线的解析式为.故答案为:【点睛】本题主要考查了求一次函数解析式,根据题意得到入射光线所在直线和反射光线所在直线关于轴对称是解题的关键.7、21【解析】【分析】根据题意设甲、乙、丙、丁车间的人数分别为人,甲、乙、丙、丁车间的日生产量分别为,则根据甲车间、丙车间的日生产之和比乙车间、丁车间的日生产之和少件,转化为只含有的方程,进而根据因式分解化简得,根据不等式求得的范围,根据是整数,即可求得的值,进而求得,根据题意列出代数式,并根据一次函数的性质求得当时,取得最大值,即可求得的值,即可解决问题.【详解】根据题意设甲、乙、丙、丁车间的人数分别为人,甲、乙、丙、丁车间的日生产量分别为,则,,,即又即即解得是整数,即是整数设甲、丙两车间当日生产量之和为:则,则当最大时,取得最大值即时,取得最大值此时故答案为:21【点睛】本题考查了方程组的应用,一元一次不等式的应用,一次函数的性质求最值问题,理清题中各关系量是解题的关键.8、或##或【解析】【分析】设P(m,2),过A作AE⊥直线l于点E,延长AB与l交于点D,根据S△PAB=S△PAD−S△PBD列出m的方程,进行解答便可.【详解】解:设P(m,2),过A作AE⊥直线l于点E,延长AB与l交于点D,如图,∴E(1,2)∵A(1,-1)、B(2,0)设直线AB的解析式为y=kx+b,把A(1,-1)、B(2,0)代入上式得,解得∴直线AB的解析式为y=x-2,当y=2时,2=x-2,则x=4,∴D(4,2),∴ED=3,PD=|4–m|,∴S△PAB=S△PAD−S△PBD=,∴∴解得,m=-6或14,∴P(-6,2)或(14,2).故答案为:(-6,2)或(14,2).【点睛】本题主要考查了三角形的面积计算,图形与坐标特征,关键是根据S△PAB=S△PAD−S△PBD列出方程解答.三、解答题1、(1)③④;(2)y=0.5x+12(0≤x≤18);(3)弹簧长度是17cm;(4)所挂物体的质量为16kg.【解析】【分析】(1)由表格可得弹簧原长以及所挂物体每增加1kg弹簧伸长的长度,可得答案;(2)由(1)中结论可求出弹簧总长y(cm)与所挂重物x(kg)之间的函数关系式;(3)令x=10时,求出y的值即可;(4)令y=20时,求出x的值即可.(1)解:x与y都是变量,且x是自变量,y是x的函数,故①正确;当x=6时,y=15,当x=0时,y=12,15-12=3,故②正确,③错误;在弹性限度内,物体质量每增加1kg,弹簧长度y增加0.5cm,但是当超出弹性限度后,弹簧长度就不再增加,故④错误;故答案为:③④;(2)解:弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式为y=0.5x+12,∵在弹性限度内该弹簧悬挂物体后的最大长度为21cm.∴0.5x+12≤21,解得:x≤18,∴y=0.5x+12(0≤x≤18);(3)解:当x=10kg时,代入y=0.5x+12,解得y=17cm,即弹簧长度是17cm;(4)当y=20cm时,代入y=0.5x+12,解得x=16,即所挂物体的质量为16kg.【点睛】本题考查了函数的关系式及函数值,关键在于根据图表信息列出等式,然后变形为函数的形式.2、(1)30°(2)(3)y=(0<x<6)【解析】【分析】(1)由勾股定理的逆定理可得出,由直角三角形的性质可得出答案;(2)求出,由直角三角形的性质得出.由勾股定理可得出答案;(3)过点作于点,证明为等边三角形,由勾定理得出,则可得出答案.(1)解:,,,,,,,,;(2)解:点关于直线的对称点为点,垂直平分,,,,,,,.;(3)解:过点作于点,,,为等边三角形,,,,,,,,,关于的函数解析式为.【点睛】本题是三角形综合题,考查了直角三角形的性质,等边三角形的判定与性质,勾股定理,轴对称的性质,解题的关键是熟练掌握勾股定理.3、(1)0.5(2)见解析(3)(,),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km【解析】【分析】(1)由甲骑车6min行驶了3km,可得甲骑车的速度是0.5km/min;(2)设乙的速度为xkm/min,求出乙的速度,可得乙出发后9min到达B地,即可作出图象;(3)由y甲=0.5x,y乙=1.8-0.2x,可得两个函数图象的交点坐标为(,),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km.(1)解:甲骑车6min行驶了3km,∴甲骑车的速度是3÷6=0.5(km/min),故答案为:0.5;(2)解:设乙的速度为xkm/min,由题意得0.5×4-4x=1.2,∴x=0.2,又A、B两地相距3km,A、C两地相距1.2km,∴B、C两地相距1.8km,∴乙出发后1.8÷0.2=9(min)到达B地,在同一平面直角坐标系中画出乙离B地的距离y乙(km)与所用时间x(min)的关系的大致图象如下:(3)解:由(1)(2)可知,y甲=0.5x,y乙=1.8-0.2x,由0.5x=1.8-0.2x得x=,当x=时,y甲=y乙=,∴两个函数图象的交点坐标为(,),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km.【点睛】本题考查一次函数的应用,一元一次方程的应用,解题的关键是读懂题意,求出甲、乙速度从而列出函数关系式.4、(1)(4,0),(0,3)(2)78,y=﹣247(3)3或9【解析】【分析】(1)令x=0和y=0即可求出点A,B的坐标;(2)连接BC,设OC=x,则AC=BC=4﹣x,在Rt△BOC中,利用勾股定理求出x,再利用待定系数法求出直线BC的解析式即可;(3)先求出点P的坐标,根据三角形的面积公式即可求解.(1)解:令y=0,则x=4;令x=0,则y=3,故点A的坐标为(4,0),点B的坐标为(0,3).故答案为:(4,0),(0,3);(2)解:如图所示,连接BC,设OC=x,∵直线CD垂直平分线段AB,∴AC=CB=4﹣x,∵∠BOA=90°,∴OB2+OC2=CB2,32+x2=(4﹣x)2,解得x=7∴OC=7∴C(78设直线BC的解析式为y=kx+b,则有b=37解得k=−24∴直线BC的解析式为y=﹣247x(3)解:如图,∵点A的坐标为(4,0),∴OA=4,∵OP=12OA∴OP=2,∴点P的坐标为(2,0),P′(﹣2,0),∴AP=2,AP′=6,∴S△ABP=12AP•OB=1S△ABP′=12AP′•OB=12综上:△ABP的面积为3或9.【点睛】本题考查了一次函数,勾股定理,解题的关键是掌握一次函数的性质.5、(1)(-2,3)(2)不变,1【解析】【分析】(1)过点C作CE⊥y轴于E,根据AAS证明△AEC≌△BOA,可得CE=OA=2,AE=BO=1,即可得出点C的坐标;(2)过点C作CE⊥y轴于E,根据AAS证明△AEC≌△BOA,可得CE=OA=a,AE=BO=1,从而OE=a=1,即可得出点C的坐标为(-a,a+1),据此可得c+d的值不变.(1)解:如图1中,过点C作CE⊥y轴于E,则∠CEB=∠BOA.∵△ABC是等腰直角三角形,∴BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠ABO+∠CBE,∴∠BCE=∠ABO,在△BCE和△ABO中,,∴△BCE≌△ABO(AAS),∵A(-1,0),B(0,2),∴AO=BE=1,OB=EC=2,∴OE=1+2=3,∴C(-2,3),故答案为:(-2,3);(2)解:动点A在运动的过程中,c+d的值不变.如图2,过点C作CE⊥y轴于E,则∠CEB=∠BOA,∵△ABC是等腰直角三角形,∴BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠ABO+∠CBE,∴∠BCE=∠ABO,在△BCE和△ABO中,,∴△BCE≌△ABO(AAS),∵A(-1,0),B(0,a),∴BE=AO=1,CE=BO=a,∴OE=1+a,∴C(-a,1+a),又∵点C的坐标为(c,d),∴c+d=-a+1+a=1,即c+d的值不变.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 服务设计创新实践-洞察及研究
- 健康生活方式与可持续消费行为的关联研究-洞察及研究
- 智能传感在质量检测中的应用-洞察及研究
- 移民政策对国内人口结构的影响-洞察及研究
- 心理咨询AI系统用户体验研究-洞察及研究
- 深度学习在语音识别中的改进-洞察及研究
- 2025年呼吸科常见呼吸道疾病治疗方案模拟考试卷答案及解析
- 2025年内分泌科常见疾病治疗方案综合考察答案及解析
- 露天矿山坍塌事故应急救援演练实施方案
- 建筑设计施工一体化管理方案
- 牙齿矫正方式对比
- 3.2 中国的矿产资源教学课件 初中地理湘教版(2024)八年级上册
- 学堂在线 高技术与现代局部战争 章节测试答案
- 无人机公司飞手管理制度
- 房地产抵押贷款合同电子版预览
- 公路机电安全培训课件
- DB42-T 2389-2025 陶粒沥青混凝土路面施工技术规程
- 25春国家开放大学《物流信息技术》形考任务1-4参考答案
- 2025年中国声卡市场现状分析及前景预测报告
- 新人教版七年级上数学第一单元测试卷及答案
- 《职场压力管理》课件
评论
0/150
提交评论