版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省樟树市中考数学试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、一元二次方程(m+1)x2-2mx+m2-1=0有两个异号根,则m的取值范围是(
)A.m<1 B.m<1且m≠-1C.m>1 D.-1<m<12、如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,过点C作⊙O的切线,交AB的延长线于点D.设∠A=α,∠D=β,则()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°3、下列说法正确的是(
)①近似数精确到十分位;②在,,,中,最小的是;③如图所示,在数轴上点所表示的数为;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点.A.1 B.2 C.3 D.44、如图,正五边形内接于⊙,为上的一点(点不与点重合),则的度数为(
)A. B. C. D.5、将抛物线先绕坐标原点旋转,再向右平移个单位长度,所得抛物线的解析式为(
)A. B.C. D.二、多选题(5小题,每小题3分,共计15分)1、如图,AB为的直径,,BC交于点D,AC交于点E,.下列结论正确的是(
)A. B.C. D.劣弧是劣弧的2倍2、如图,在中,为直径,,点D为弦的中点,点E为上任意一点,则的大小不可能是(
)A. B. C. D.3、如图,AB是的直径,C是上一点,E是△ABC的内心,,延长BE交于点F,连接CF,AF.则下列结论正确的是(
)A. B.C.△AEF是等腰直角三角形 D.若,则4、在图形旋转中,下列说法正确的是(
)A.在图形上的每一点到旋转中心的距离相等B.图形上每一点转动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等5、下列说法正确的是(
)A.“射击运动员射击一次,命中靶心”是随机事件B.某彩票的中奖机会是1%,买100张一定会中奖C.抛掷一枚质地均匀的硬币两次,则两次都是“正面朝上”的概率是D.某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,估计该校最喜欢的课外体育运动项目为跳绳的有1360人第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.则S与x的函数关系式是____________,自变量x的取值范围是____________.2、如图有一抛物线形的拱桥,拱高10米,跨度为40米,则该抛物线的表达式为______________.3、关于的方程有两个不相等的实数根,则的取值范围是________.4、如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是_________.5、如图,抛物线的图象与坐标轴交于点、、,顶点为,以为直径画半圆交轴的正半轴于点,圆心为,是半圆上的一动点,连接,是的中点,当沿半圆从点运动至点时,点运动的路径长是__________.四、解答题(6小题,每小题10分,共计60分)1、(1)计算:(2)解方程:2(x﹣3)2=502、已知关于x的一元二次方程.(1)求证:不论m取何值,方程总有两个不相等的实数根;(2)若方程有两个实数根为,,且,求m的值.3、如图,方格中,每个小正方形的边长都是单位1,△ABC的位置如图.(1)画出将△ABC向右平移2个单位得到的△A1B1C1;(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2;(3)写出C2点的坐标.4、某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.5、已知关于x的一元二次方程有两个实数根.(1)求k的取值范围;(2)若,求k的值.6、用适当的方法解方程:(1).(2).-参考答案-一、单选题1、B【解析】【分析】设方程两根为x1,x2,根据一元二次方程的定义和根与系数的关系求解即可.【详解】解:设方程两根为x1,x2,根据题意得m+1≠0,,解得m<1且m≠-1,∵x1•x2<0,∴Δ>0,∴m的取值范围为m<1且m≠-1.故选:B.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程根与系数的关系.2、C【解析】【分析】连接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切线,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【详解】连接OC,如图,∵⊙O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故选:C.【考点】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质.3、B【解析】【分析】根据近似数的精确度定义,可判断①;根据实数的大小比较,可判断②;根据点在数轴上所对应的实数,即可判断③;根据反证法的概念,可判断④;根据角平分线的性质,可判断⑤.【详解】①近似数精确到十位,故本小题错误;②,,,,最小的是,故本小题正确;③在数轴上点所表示的数为,故本小题错误;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;⑤在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确.故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键.4、B【解析】【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72°,即∠COD=72°,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故∠CPD=,故选B.【考点】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.5、C【解析】【分析】先根据点绕坐标原点旋转的坐标变换规律、待定系数法求出旋转后的抛物线的解析式,再根据二次函数的图象平移的规律即可得.【详解】将抛物线的顶点式为则其与x轴的交点坐标为,顶点坐标为点绕坐标原点旋转的坐标变换规律:横、纵坐标均变为相反数则绕坐标原点旋转后,所得抛物线与x轴的交点坐标为,顶点坐标为设旋转后所得抛物线为将点代入得:,解得即旋转后所得抛物线为则再向右平移个单位长度,所得抛物线的解析式为即故选:C.【考点】本题考查了点绕坐标原点旋转的坐标变换规律、待定系数法求二次函数解析式、二次函数的图象平移的规律,熟练掌握坐标旋转变换规律和二次函数的图象平移规律是解题关键.二、多选题1、ABD【解析】【分析】根据圆周角定理,等边对等角,等腰三角形的性质,直径所对圆周角是直角等知识即可解答【详解】如图,连接,,∵是的直径,∴,又∵中,,∴点D是的中点,即,故选项正确;由选项可知是的平分线,∴,由圆周角定理知,,故选项正确;∵是的直径,∴,∵,∴,∴,∵,∴,∴,即,∴,故选项错误;∵,∴,∴,在中,∵,∴,∴,∴,∴劣弧是劣弧的2倍,故选项正确.综上所述,正确的结论是:.故选:【考点】本题考查了圆周角定理,等边对等角,等腰直角三角形的判定和性质,直径所对圆周角是直角等知识,解题关键是求出相应角的度数2、ACD【解析】【分析】延长ED交⊙O于N,连接OD,并延长交⊙O于M,根据已知条件知的度数是80°,根据点D为弦AC的中点得出,求出、的度数=40°,即可求出40°<的度数<80°,再得出答案即可.【详解】解:延长ED交⊙O于N,连接OD,并延长交⊙O于M,∵∠AOC=80°,∴的度数是80°,∵点D为弦AC的中点,OA=OC,∴∠AOD=∠COD,∴,即M为的中点,∴、的度数都是×80°=40°,∵>,∴40°<的度数<80°,∴20°<∠CED<40°,∴选项ACD符合题意;选项B不符合题意;故选:ACD.【考点】本题考查了圆心角、弧、弦之间的关系,圆周角定理,等腰三角形的性质等知识点,能求出的范围是解此题的关键.3、BCD【解析】【分析】由圆周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的内心可得∠EAB+∠EBA=45°,从而得出∠AEF=45°,进一步得到△ABC是等腰直角三角形,再由垂径定理得EF=EB,从而可得AE=EB,由中位线定理得AE=2OE=2,最后求出.【详解】∵AB为直径,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的内心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故选项B正确,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故选项C正确,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故选项A错误,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故选项D正确,故选:BCD【考点】本题主要考查了垂径定理,圆周角定理,中位线定理,三角形内心性质,等腰直角三角形,等知识,证明△ABC是等腰直角三角形是解题的关键.4、BCD【解析】【分析】根据旋转的性质分别对每一个选项进行判断即可.【详解】解:A、由旋转的性质可得,图形上对应点到旋转中心的距离相等,故此选项不符合题意;B、由旋转的性质可得,图形上的每一点转动的角度相同,故此选项符合题意;C、由旋转的性质可得,图形上可能存在不动点(例如此点为旋转中心),故此选项符合题意;D、由旋转的性质可得,图形上对应两点的连线与其对应两点的连线相等,故此选项符合题意;故选BCD.【考点】本题主要考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.5、ACD【解析】【分析】根据随机事件的定义(随机事件是指在一定条件下可能发生也可能不发生的事件)可判断A;由于中奖的概率是等可能的,则买100张可能会中奖,可能不会中奖可判断B;利用列举法将所有可能列举出来,求满足条件的概率即可判断C;根据计算公式列出算式,即可判断D.【详解】解:A、“射击运动员射击一次,命中靶心”是随机事件,选项正确;B、由于中奖的概率是等可能的,则买100张可能会中奖,可能不会中奖,选项说法错误,不符合题意;C、抛掷一枚质地均匀的硬币两次,所有可能出现的结果有:(正,正),(正,反),(反,正),(反,反),则两次都是“正面朝上”的概率是,选项正确;D、根据计算公式该项人数等于该项所占百分比乘以总人数,,选项正确,符合题意.故选:ACD.【考点】本题主要考查随机事件的定义,概率发生的可能性、求随机事件的概率与求某项的人数,根据等可能事件的概率公式求解是解题关键.三、填空题1、
S=-3x2+24x
≤x<8【解析】【详解】可先用篱笆的长表示出BC的长,然后根据矩形的面积=长×宽,得出S与x的函数关系式,并根据墙的最大可用长度为10米,列不等式组即可得出自变量的取值范围.解:由题可知,花圃的宽AB为x米,则BC为(24−3x)米.∴S=x(24−3x)=−3x2+24x.∵0<24−3x≤10,解得≤x<8,故答案为S=-3x2+24x,≤x<8.2、【解析】【分析】由题意抛物线过点(40,0),顶点坐标为(20,10),设抛物线的解析式为,从而求出a的值,然后确定抛物线的解析式.【详解】解:依题意得此函数解析式顶点为,∴设解析式为,又函数图象经过,,,.故答案为.【考点】本题主要考查用待定系数法确定二次函数的解析式,解题时应根据情况设抛物线的解析式从而使解题简单,此题设为顶点式比较简单.3、且【解析】【分析】若一元二次方程有两个不相等的实数根,则△=b2-4ac>0,建立关于k的不等式,求得k的取值范围,还要使二次项系数不为0.【详解】∵方程有两个不相等的实数根,∴解得:,又二次项系数故答案为且【考点】考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.4、2【解析】【分析】根据中心对称的性质AD=DE及∠D=90゜,由勾股定理即可求得AE的长.【详解】∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE=,故答案为.【考点】本题考查了中心对称的性质,勾股定理等知识,关键中心对称性质的应用.5、【解析】【分析】先求出A、B、E的坐标,然后求出半圆的直径为4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,计算即可.【详解】解:,∴点E的坐标为(1,-2),令y=0,则,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,如图,∴点运动的路径长是.【考点】本题属于二次函数和圆的综合问题,考查了运动路径的问题,熟练掌握二次函数和圆的基础是解题的关键.四、解答题1、(1)﹣;(2)x=8或﹣2.【解析】【分析】(1)直接利用立方根以及算术平方根的性质化简得出答案;(2)直接利用平方根的定义计算得出答案.【详解】(1)原式=2﹣3﹣(﹣1)=﹣1﹣+1=﹣;(2)2(x﹣3)2=50(x﹣3)2=25,则x﹣3=±5,解得:x=8或﹣2.【考点】此题考查实数的运算,解一元二次方程-配方法,解题关键在于掌握运算法则.2、(1)见详解;(2)【解析】【分析】(1)根据一元二次方程根的判别式可直接进行求解;(2)利用一元二次方程根与系数的关系可直接进行求解.【详解】(1)证明:∵,∴,∴,∵,∴,∴不论m取何值,方程总有两个不相等的实数根;(2)解:∵,∴,∵方程有两个实数根为,,∴,∵,∴,解得:.【考点】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.3、(1)见解析;(2)见解析;(3)C2(2,3).【解析】【分析】(1)根据平移的方法将三点向右平移2个单位得到,然后将三个点连起来即可;(2)根据旋转的方法将三点绕点O顺时针方向旋转90°得到,然后将三个点连起来即可;(3)根据(2)中描出的点C2的位置即可写出C2点的坐标.【详解】解:(1)如图所示,△A1B1C1即为所求,(2)如图所示,△A2B2C2即为所求,(3)由(2)中点C2的位置可得,C2点的坐标为(2,3).【考点】此题考查了平面直角坐标系中的平移和旋转变换作图以及求点的坐标,解题的关键是熟练掌握平移和旋转变换的方法.4、(1);(2)【解析】【分析】(1)根据题意先分类讨论,当售价超过50元但不超过80元时,上涨的价格是元,就少卖
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年深圳市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(a卷)
- 成都市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(巩固)
- 锡林郭勒盟农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解(基础+提升)
- 漳州市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解ab卷
- 2026年大庆市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(黄金题型)
- 2026年平凉市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(考试直接用)
- 苏州市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解(夺冠系列)
- 2026年铜仁地区农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(突破训练)
- 2026年十堰市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(完整版)
- 黔东南苗族侗族自治州农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)有完整答案详解
- JJG 693-2011可燃气体检测报警器
- 酒店用品设备采购投标方案(技术方案)
- 【全国旅行社名录(名称、电话、传真、地址、邮编、传真等相关信息)】
- 托管中心消防应急预案
- 2022届上海宝山区中考数学一模试卷及答案
- YY 0299-2016医用超声耦合剂
- GB/T 9695.13-2009肉与肉制品钙含量测定
- GB/T 25067-2020信息技术安全技术信息安全管理体系审核和认证机构要求
- 常用钢材热处理工艺参数
- 非煤矿山建设项目管理办法
- 2023年中国中煤能源集团有限公司校园招聘笔试题库及答案解析
评论
0/150
提交评论