难点解析京改版数学9年级上册期末测试卷附参考答案详解(综合题)_第1页
难点解析京改版数学9年级上册期末测试卷附参考答案详解(综合题)_第2页
难点解析京改版数学9年级上册期末测试卷附参考答案详解(综合题)_第3页
难点解析京改版数学9年级上册期末测试卷附参考答案详解(综合题)_第4页
难点解析京改版数学9年级上册期末测试卷附参考答案详解(综合题)_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

京改版数学9年级上册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、在中,AC=4,BC=3,则cosA的值等于(

)A. B. C.或 D.或2、已知A、B两地相距10km,在地图上相距10cm,则这张地图的比例尺是(

).A.100000:1 B.1000:1 C.1:100000 D.1:10003、构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°.类比这种方法,计算tan22.5°的值为()A. B.﹣1 C. D.4、当0x3,函数y=﹣x2+4x+5的最大值与最小值分别是()A.9,5 B.8,5 C.9,8 D.8,45、2019年女排世界杯于9月在日本举行,中国女排以十一连胜的骄人成绩卫冕冠军,充分展现了团队协作、顽强拼搏的女排精神.如图是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作拋物线,在同一竖直平面内建立如图所示的直角坐标系,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点)距球网的水平距离为2.5米,则排球运动路线的函数表达式为(

)A. B.C. D.6、如图,PAB为⊙O的割线,且PA=AB=3,PO交⊙O于点C,若PC=2,则⊙O的半径的长为()A. B. C. D.7二、多选题(7小题,每小题2分,共计14分)1、如图,在△ABC中,点D、E分别在边AB、AC上,且BD=2AD,CE=2AE,则下列结论中成立的是()A.△ABC∽△ADE B.DE∥BCC.DE:BC=1:2 D.S△ABC=9S△ADE2、如图,在△ABC中,点D在边AC上,下列条件中,不能判断△BDC与△ABC相似的是(

)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA3、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的有()A.2a+b<0 B.abc>0 C.4a﹣2b+c>0 D.a+c>04、在△ABC中,∠C=90°,下列各式一定成立的是(

)A.a=b∙cosA B.a=c∙cosB C.c= D.a=b∙tanA5、已知四条线段a,b,c,d是成比例线段,即,下列说法正确的是(

)A.ad=bc B. C. D.6、下列说法中,不正确的是(

)A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心7、如图,在中,,于点D,下列结论正确的是(

)A. B. C. D.第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、如图,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),B(1,0),与y轴交于点C.下列结论:①abc>0;②3a﹣c=0;③当x<0时,y随x的增大而增大;④对于任意实数m,总有a﹣b≥am2﹣bm.其中正确的是_____(填写序号).2、如图,在⊙O中,,,则图中阴影部分的面积是_________.(结果保留)3、将二次函数化成一般形式,其中二次项系数为________,一次项系数为________,常数项为________.4、如图,点O是正方形ABCD的对称中心,射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF,已知,.(1)以点E,O,F,D为顶点的图形的面积为_________;(2)线段EF的最小值是_________.5、在平面直角坐标系中,已知和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为_____.6、如图,在RT△ABC中,,,,是斜边上方一点,连接,点是的中点,垂直平分,交于点,连接,交于点,当为直角三角形时,线段的长为________.7、三角形ABC中,,,,则边的长为_______.四、解答题(6小题,每小题10分,共计60分)1、在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.①当时,请直接写出“W区域”内的整点个数;②当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.2、如图,AB为⊙O直径,AC为弦,过⊙O外的点D作DE⊥OA于点E,交AC于点F,连接DC并延长交AB的延长线于点H,且∠D=2∠A.(1)求证:DC与⊙O相切;(2)若⊙O半径为4,,求AC的长.3、某校举行田径运动会,学校准备了某种气球,这些气球内充满了一定质量的气体,当温度不变时,气球内气体的气压是气体体积的反比例函数,其图象如图所示.(1)求这一函数的解析式.(2)当气体的体积为时,气压是多少?(3)当气球内的气压大于时,气球会将爆炸,为了安全起见,气体的体积应不小于多少?4、如图,已知抛物线的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:(),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.5、如图,在平面直角坐标系中,O为坐标原点,点A坐标为(3,0),四边形OABC为平行四边形,反比例函数y=(x>0)的图象经过点C,与边AB交于点D,若OC=2,tan∠AOC=1.(1)求反比例函数解析式;(2)点P(a,0)是x轴上一动点,求|PC-PD|最大时a的值;(3)连接CA,在反比例函数图象上是否存在点M,平面内是否存在点N,使得四边形CAMN为矩形,若存在,请直接写出点M的坐标;若不存在,请说明理由.6、(1)计算:.(2)解方程:.-参考答案-一、单选题1、C【解析】【分析】分两种情况:①AB为斜边;②AC为斜边,根据勾股定理求出AB长,然后根据余弦定义即可求解.【详解】由题意,存在两种情况:①当AB为斜边时,∠C=90º,∵AC=4,BC=3,∴AB=,∴cosA=;②当AC为斜边时,∠B=90º,∵AC=4,BC=3,∴AB=,∴cosA=,综上,cosA的值等于或,故选:C.【考点】本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义,并注意分类讨论是解答本题的关键.2、C【解析】【分析】比例尺=图上距离:实际距离,根据题意可直接求得比例尺.【详解】∵10km=1000000cm,∴比例尺为10:1000000=1:100000.故选C.【考点】掌握比例尺的计算方法,注意在求比的过程中,单位要统一.比例尺=图上距离:实际距离,图上距离在前,实际距离在后.3、B【解析】【分析】作Rt△ABC,使∠C=90°,∠ABC=45°,延长CB到D,使BD=AB,连接AD,根据构造的直角三角形,设AC=x,再用x表示出CD,即可求出tan22.5°的值.【详解】解:作Rt△ABC,使∠C=90°,∠ABC=90°,∠ABC=45°,延长CB到D,使BD=AB,连接AD,设AC=x,则:BC=x,AB=,CD=,故选:B.【考点】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.4、A【解析】【分析】利用配方法把原方程化为顶点式,再根据二次函数的性质即可解答.【详解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴当x=2时,最大值是9,∵0≤x≤3,∴x=0时,最小值是5,故选:A.【考点】本题考查二次函数的最值,掌握二次函数的性质与利用配方法将一般式改为顶点式是解答本题的关键.5、A【解析】【分析】由题意可知点A坐标为(-5,0.5),点B坐标为(0,2.5),点C坐标为(2.5,0),设排球运动路线的函数表达式为:y=ax2+bx+c,将点A、B、C的坐标代入得关于a、b、c的三元一次方程组,解得a、b、c的值,则函数解析式可得,从而问题得解.【详解】解:由题意可知点A坐标为(-5,0.5),点B坐标为(0,2.5),点C坐标为(2.5,0)设排球运动路线的函数解析式为:y=ax2+bx+c,∵排球经过A、B、C三点,,解得:,∴排球运动路线的函数解析式为,故选:A.【考点】本题考查了根据实际问题列二次函数关系式并求得关系式,数形结合并明确二次函数的一般式是解题的关键.6、A【解析】【分析】延长PO到E,延长线与圆O交于点E,连接EB,AC,根据四边形ACEB为圆O的内接四边形,利用圆内接四边形的外角等于它的内对角得到一对角相等,再由公共角相等,利用两对对应角相等的两三角形相似,可得出三角形ACP与三角形EBP相似,由相似得比例,进而可求得答案.【详解】延长PO到E,延长线与圆O交于点E,连接EB,AC,∵四边形ACEB为圆O的内接四边形,∴∠ACP=∠E,又∠P=∠P,∴△ACP∽△EBP,∴PA:PE=PC:PB,∴PA•PB=PC•PE,∵PA=AB=3,∴PB=6,又PC=2,∴3×6=2PE,∴PE=9,∴CE=9-2=7,∴半径=3.5.【考点】此题考查了圆内接四边形的性质,相似三角形的判定与性质,利用了转化思想,其中作出如图所示的辅助线是解本题的关键.二、多选题1、ABD【解析】【分析】由已知条件易证DE∥BC,则△ABC∽△ADE,再由相似三角形的性质即可得到问题的选项.【详解】解:∵BD=2AD,CE=2AE,∴,∴DE∥BC,故B正确;∴△ABC∽△ADE,故A正确;∴DE:BC=AD:AB=1:3,故C错误;∴S△ABC=9S△ADE故D正确,∴其中成立的jABD,故选ABD.【考点】本题考查了平行四边形的性质以及相似三角形的判定和性质,证明DE∥BC是解题的关键.2、ABD【解析】【分析】根据三角形相似的判断方法逐个判断即可.【详解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合题意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合题意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故选项不符合题意;D、BD2=CD·DA,不能判定△BDC与△ABC,符合题意;故选:ABD.【考点】此题考查了三角形相似的判定方法,解题的关键是熟练掌握三角形相似的判定方法.3、AD【解析】【分析】结合图象,根据函数的开口方向、与y轴的交点、对称轴的位置、和当x=-2时,x=-1时,对应y值的大小依次可判断.【详解】解:根据开口方向可知,根据图象与y轴的交点可知,根据对称轴可知:,∴,∴,,故A选项正确;∴abc<0,故B选项错误;根据图象可知,当x=-2时,,故C选项错误;根据图象可知,当x=-1时,,∴,故D选项正确.故选:AD.【考点】本题考查了二次函数图象判定式子的正负.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点确定,注意特殊点的函数值.4、BCD【解析】【分析】作出图形,然后根据三角函数的定义对各选项分析判断后利用排除法求解.【详解】解:如图,A、a=b•tanA,故选项A错误,不符合题意;B、a=c•cosB正确,故关系式一定成立;C、c=正确,故关系式一定成立;D、a=b∙tanA正确,故关系式一定成立;故选BCD.【考点】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5、ABD【解析】【分析】根据比例的性质将原式变形,分别进行判断即可,进而得出答案.【详解】解:∵四条线段a,b,c,d是成比例线段,即,∴A.利用内项之积等于外项之积,ad=bc,故选项正确,B.利用内项之积等于外项之积,a(b+d)=b(a+c),ab+ad=ab+bc,即ad=bc,故选项正确,C.∵,∴,故选项错误,D.∵∴,故选项正确,故选:ABD.【考点】此题主要考查了比例的性质,将比例式灵活正确变形得出是解题关键.6、ABC【解析】【分析】根据垂径定理的推论,即如果一条直线满足:①垂直于弦,②平分弦,③过圆心,④平分优弧,⑤平分劣弧中的两个条件,即可推论出其余三个,逐一进行判断即可.【详解】解:A、由于直径也是弦,所以平分一条直径的弦不一定垂直这条直径,选项说法错误,符合题意;B、平分一条弧的直线不一定垂直于这条弧,应该是:过圆心,且平分一条弧的直线垂直于这条弧所对的弦,选项说法错误,符合题意;C、弦的垂线不一定经过这条弦所在的圆心,应该是:弦的垂直平分线必经过这条弦所在的圆心,选项说法错误,符合题意;D、在一个圆内,平分一条弧和它所对弦的直线必经过这个圆的圆心,选项说法正确,不符合题意;故选ABC.【考点】本题考查了垂径定理,解题的关键是掌握垂径定理及其推论.7、BC【解析】【分析】根据等角的余角相等,先把跟相等的角找出来,在不同直角三角形根据正弦值的定义即可解答.【详解】在中,,,于点D,,,在中,,故A错误;在中,,故B正确;在中,,故C正确,D错误.故选:BC.【考点】本题考查了锐角三角形的定义,掌握正弦值的表示是解题的关键.三、填空题1、①④或④①【解析】【分析】根据抛物线的对称轴,开口方向,与轴的交点位置,即可判断①,根据二次函数y=ax2+bx+c的图象经过点A(﹣3,0),B(1,0),即可求得对称轴,以及当时,,进而可以判断②③,根据顶点求得函数的最大值,即可判断④.【详解】解:抛物线开口向下,,对称轴,,抛物线与轴交于正半轴,,,故①正确,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),B(1,0),对称轴为,则,当,,,故②不正确,由函数图象以及对称轴为,可知,当时,随的增大而增大,故③不正确,对称轴为,则当时,取得最大值,对于任意实数m,总有,即,故④正确.故答案为:①④.【考点】本题考查了二次函数图象的性质,数形结合是解题的关键.2、【解析】【分析】由,根据圆周角定理得出,根据S阴影=S扇形AOB-可得出结论.【详解】解:∵,∴,∴S阴影=S扇形AOB-,故答案为:.【考点】本题主要考查圆周角定理、扇形的面积计算,根据题意求得三角形与扇形的面积是解答此题的关键.3、

【解析】【分析】通过去括号,移项,可以把方程化成二次函数的一般形式,然后确定二次项系数,一次项系数,常数项.【详解】y=﹣2(x﹣2)2变形为:y=﹣2x2+8x﹣8,所以二次项系数为﹣2;一次项系数为8;常数项为﹣8.故答案为﹣2,8,﹣8.【考点】本题考查的是二次函数的一般形式,通过去括号,移项,合并同类项,得到二次函数的一般形式,确定二次项系数,一次项系数,常数项的值.4、

1

【解析】【分析】(1)连接AO,DO,证明,可得,求出即可求解;(2)设,则,由勾股定理可得,即可求EF的最小值.【详解】解:(1)连接AO,DO,∵,∴,∵四边形ABCD是正方形,O是中心,∴,,,∴,∴,∴,∴,∵,∴,∴故答案为:1;(2)设,则,,在中,,∴当时,EF有最小值,故答案为:.【考点】本题考查正方形的性质,全等三角形的判定与性质,二次函数的性质,熟练掌握二次函数求最值的方法是解题的关键.5、4【解析】【分析】通过A、B两点得出对称轴,再根据对称轴公式算出b,由此可得出二次函数表达式,从而算出最小值即可推出n的最小值.【详解】∵A、B的纵坐标一样,∴A、B是对称的两点,∴对称轴,即,∴b=-4.∴抛物线解析式为:.∴抛物线顶点(2,-3).∴满足题意n的最小值为4,故答案为:4.【考点】本题考查二次函数对称轴的性质,顶点式的变形及抛物线的平移,关键在于根据对称轴的性质从题意中判断出对称轴.6、或【解析】【分析】(1)分别在、、中应用含角的直角三角形的性质以及勾股定理求得,,再根据垂直平分线的性质、等边三角形的判定和性质、等腰三角形的判定求得,最后利用线段的和差即可求得答案;根据垂直平分线的性质、全等三角形的判定和性质、分线段成比例定理可证得,然后根据平行线的性质、相似三角形的判定和性质列出方程,解方程即可求得,最后利用线段的和差即可求得答案.【详解】解:①当时,如图1:∵在中,,,∴∴∵,∴∵∴∴在中,设,则∵∴∴∴,∵垂直平分线段∴∵∴是等边三角形∴∴∴;②当时,连接、交于点,过点作于,如图2:设,则,∵垂直平分线段,点是的中点∴∵∴∵∵∴垂直平分线段∴∵,∴∴∵∴,∴∴∴∴∴∴∴.∴综上所述,满足条件的的值为6或.故答案是:6或【考点】本题考查了垂直平分线的性质和判定、含角的直角三角形的性质、勾股定理、全等三角形的判定和性质、平行线的判定和性质、相似三角形的判定和性质、等边三角形的判定和性质等,渗透了逻辑推理的核心素养以及分类讨论的数学思想.7、2【解析】【分析】根据正切定义得到,则可设AB=x,BC=2x,利用勾股定理计算出AC=x,所以x=,解得x=1,然后计算2x即可得到BC的长.【详解】解:如图,∵∠B=90°,∴,设AB=x,则BC=2x,∴,∴x=,解得x=1,∴BC=2x=2.故答案为:2.【考点】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.四、解答题1、(1)顶点P的坐标为;(2)①6个;②,.【解析】【分析】(1)由抛物线解析式直接可求;(2)①由已知可知A(0,2),C(2+,-2),画出函数图象,观察图象可得;②分两种情况求:当a>0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a=,则<a≤1;当a<0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-,则-1≤a<-.【详解】解:(1)∵y=ax2-4ax+2a=a(x-2)2-2a,∴顶点为(2,-2a);(2)如图,①∵a=2,∴y=2x2-8x+2,y=-2,∴A(0,2),C(2+,-2),∴有6个整数点;②当a>0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,,;∴.当时,抛物线顶点经过点(2,2)时,;抛物线顶点经过点(2,1)时,;∴.∴综上所述:,.【考点】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键.2、(1)证明见解析(2)【解析】【分析】(1)连接OC,由圆周角定理和已知条件得出∠BOC=∠D,证出∠OCH=90°,得出DC⊥OC,即可得出结论;(2)作AG⊥CD于G,则AG∥OC,由三角函数定义求出OH=OC=5,得出AH=OA+OH=9,由勾股定理得出CH==3,证△OCH∽△AGH,求出AG=OC=,GH=CH=,得出CG=GH﹣CH=,再由勾股定理即可得出答案.【详解】(1)证明:连接OC,如图1所示:∵DE⊥OA,∴∠HED=90°,∴∠H+∠D=90°,∵∠BOC=2∠A,∠D=2∠A,∴∠BOC=∠D,∴∠H+∠BOC=90°,∴∠OCH=90°,∴DC⊥OC,∴DC与⊙O相切;(2)作AG⊥CD于G,如图2所示:则AG∥OC,∵DC⊥OC,∴∠OCH=90°,∵∠BOC=∠D,OC=4,∴cos∠BOC==,∴OH=OC=5,∴AH=OA+OH=4+5=9,CH===3,∵AG∥OC,∴△OCH∽△AGH,∴===,∴AG=OC=,GH=CH=,∴CG=GH﹣CH=﹣3=,∴AC===.【考点】本题考查圆的综合问题,涉及切线的判定、勾股定理、锐角三角函数,相似三角形等知识,属于中等题型.熟练掌握圆的切线的证明方法以及圆周角定理是解题的关键.3、(1);(2)60KPa;(3)【解析】【分析】(1)设,A(0.5,120)在反比例函数上,即可求得反比例函数解析式;(2)把V=1代入(1)中的函数关系式求P即可;(3)依题意P≤150,即,解不等式即可.【详解】(1)设,∵A(0.5,120)在反比例函数上∴∴k=60∴;故答案为:(2)当V=1m3时,=60(KPa);故答案为:60KPa(3)当P>150KPa时,气球将爆炸,∴P≤150,∴,解得V0.4(m3).故答案为:为了安全起见,气体的体积应不小于0.4(m3).【考点】本题考查了反比例函数的应用,将实际的问题转化为数学问题,建立反比例函数的数学模型.要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想.4、(1),M(,);(2),(,);(3)证明见试题解析.【解析】【详解】试题分析:(1)利用配方法把一般式转化为顶点式,然后根据二次函数的性质求出抛物线的顶点坐标;(2)连接BC,则BC与对称轴的交点为R,此时CR+AR的值最小;先求出点A、B、C的坐标,再利用待定系数法求出直线BC的解析式,进而求出其最小值和点R的坐标;(3)设点P坐标为(x,).根据NPAB=,列出方程,解方程得到点P坐标,再计算得出,由勾股定理的逆定理得出∠MPN=90°,然后利用切线的判定定理即可证明直线MP是⊙N的切线.试题解析:(1)∵=,∴抛物线的解析式化为顶点式为:,顶点M的坐标是(,);(2)∵,∴当y=0时,,解得x=1或6,∴A(1,0),B(6,0),∵x=0时,y=﹣3,∴C(0,﹣3).连接BC,则BC与对称轴x=的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC==.设直线BC的解析式为,∵B(6,0),C(0,﹣3),∴,解得:,∴直线BC的解析式为:,令x=,得y==,∴R点坐标为(,);(3)设点P坐标为(x,).∵A(1,0),B(6,0),∴N(,0),∴以AB为直径的⊙N的半径为AB=,∴NP=,即,移项得,,得:,整理得:,解得(与A重合,舍去),,(在对称轴的右侧,舍去),(与B重合,舍去),∴点P坐标为(2,2).∵M(,),N(,0),∴==,==,==,∴,∴∠MPN=90°,∵点P在⊙N上,∴直线MP是⊙N的切线.考点:1.二次函数综合题;2.最值问题;3.切线的判定;4.压轴题.5、(1)(2)|PC−PD|最大时a的值为6(3)存在,点M的坐标为(,)【解析】【分析】(1)先确定出OE=CE=2,即可得出点C坐标,最后用待定系数法即可得出结论;(2)先求出OC解析式,由平行四边形的性质可得BC=OA=3,BC∥OA,AB∥OC,利用待定系数法可求AB解析式,求出点D的坐标,再根据三角形关系可得出当点P,C,D三点共线时,|PC-PD|最大,求出直线CD的解析式,令y=0即可求解;(3)若四边形CAMN为矩形,则△CAM是直角三角形且AC为一条直角边,根据直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论