难点解析-鲁教版(五四制)8年级数学下册试卷及一套参考答案详解_第1页
难点解析-鲁教版(五四制)8年级数学下册试卷及一套参考答案详解_第2页
难点解析-鲁教版(五四制)8年级数学下册试卷及一套参考答案详解_第3页
难点解析-鲁教版(五四制)8年级数学下册试卷及一套参考答案详解_第4页
难点解析-鲁教版(五四制)8年级数学下册试卷及一套参考答案详解_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

鲁教版(五四制)8年级数学下册试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、下列计算正确的是()A.2a+3a=5a2 B.(a2)3=a5C.(a﹣2)(a+3)=a2+a﹣6 D.=2、若有意义,则的取值范围是()A.≤ B.≥ C.﹥0 D.<-13、如图,四边形ABCD中,AD∥BC,∠C=90°,AB=AD,连接BD,∠BAD的角平分线交BD、BC分别于点O、E,若EC=3,CD=4,则BO的长为()A.4 B.3 C.2 D.34、如图,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF,垂足为G,且AG=AB,则∠EAF=()度A.30° B.45° C.50° D.60°5、如果,那么的值是()A. B. C. D.6、如图,正方形纸片ABCD的四个顶点分别在四条平行线、、、上,这四条直线中相邻两条之间的距离依次为、、,若,,则正方形的面积S等于()A.34 B.89 C.74 D.1097、下列各式是最简二次根式的是()A. B. C. D.8、正方形具有而矩形不一定有的性质是()A.对角线互相垂直 B.对角线相等C.对角互补 D.四个角相等第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,则AM的最小值是______________.2、一个正方形的对角线长为2,则其面积为_____.3、若m≠0,则关于x的一元二次方程mx2+x-3m=0的实数根的个数为____.4、已知是方程的两个实数根,则x1x2=____.5、如图,在△ABC中,点D、E分别是AB、AC的中点,若的面积为,则四边形BDEC的面积为_____.6、已知关于x的方程x2﹣2x+k﹣1=0有两个不相等的实数根,则k的取值范围是_____.7、如图,在边长为6的等边△ABC中,D是边BC上一点,将△ABC沿EF折叠使点A与点D重合,若BD:DE=2:3,则CF=____.三、解答题(7小题,每小题10分,共计70分)1、计算:.2、如图1,在矩形ABCD中,AB=8,AD=4,点P是对角线BD上一点,连接AP,AE⊥AP,且,连接BE.(1)当DP=2时,求BE的长.(2)四边形AEBP可能为矩形吗?如果不可能,请说明理由;如果可能,求出此时四边形AEBP的面积.(3)如图2,作AQ⊥PE,垂足为Q,当点P从点D运动到点B时,直接写出点Q运动的距离.3、计算题:(1);(2).4、请阅读下列材料:问题:如图1,点A,B在直线l的同侧,在直线l上找一点P,使得AP+BP的值最小.小军的思路是:如图2,作点A关于直线l的对称点,连接,则与直线l的交点P即为所求.请你参考小军同学的思路,探究并解决下列问题:(1)如图3,在图2的基础上,设与直线l的交点为C,过点B作BD⊥l,垂足为D.若CP=1,PD=2,AC=1,写出AP+BP的值为;(2)如图3,若AC=1,BD=2,CD=6,写出此时AP+BP的最小值;(3)求出的最小值.5、如图,在正方形ABCD中,点E、F分别在线段BC、CD上,连接AE、AF,且BE=DF.求证:AE=AF.6、计算(1);(2).7、(1)计算:+|1﹣|﹣;(2)解方程:;-参考答案-一、单选题1、C【解析】【分析】根据合并同类项,幂的乘方,多项式乘多项式,二次根式的加减法计算即可.【详解】解:A选项,原式=5a,不符合题意;B选项,原式=a6,不符合题意;C选项,原式=a2+a﹣6,符合题意;D选项,和不是同类二次根式,不能合并,不符合题意;故选:C.【点睛】本题考查了合并同类项,幂的乘方,多项式乘多项式,二次根式的加减法,能正确掌握整式的运算法则是解答此题的关键.2、B【解析】【分析】根据二次根式有意义的条件列不等式求解.【详解】解:由题意可得:3x-1≥0,解得:x≥,故选:B.【点睛】本题考查二次根式有意义的条件,理解二次根式有意义的条件(被开方数为非负数)是解题关键.3、C【解析】【分析】连接DE,因为AB=AD,AE⊥BD,AD∥BC,可证四边形ABED为菱形,从而得到BE、BC的长,进而解答即可.【详解】解:连接DE.在直角三角形CDE中,EC=3,CD=4,根据勾股定理,得DE=5.∵AB=AD,AE平分∴AE⊥BD,BO=OD,∴AE垂直平分BD,∠BAE=∠DAE.∴DE=BE=5.∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=5,∴BC=BE+EC=8,∴四边形ABED是菱形,由勾股定理得出,∴,故选:C.【点睛】本题考查勾股定理的运用以及菱形的判定和性质,题目难度适中,根据条件能够发现图中的菱形ABDE是关键.4、B【解析】【分析】根据正方形的性质以及HL判定,可得出△ABF≌△AGF,故有∠BAF=∠GAF,再证明△AGE≌△ADE,有∠GAE=∠DAE,即可求∠EAF=45°【详解】解:在正方形ABCD中,∠B=∠D=∠BAD=90°,AB=AD,∵AG⊥EF,∴∠AGF=∠AGE=90°,∵AG=AB,∴AG=AB=AD,在Rt△ABF与Rt△AGF中,∴△ABF≌△AGF,∴∠BAF=∠GAF,同理可得:△AGE≌△ADE,∴∠GAE=∠DAE;∴∠EAF=∠EAG+∠FAG,∴∠EAF=45°故选:B【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质、解题的关键是得出△ABF≌△AGF.5、A【解析】【分析】根据已知条件设x=3k,y=2k,再代入求出答案即可.【详解】解:∵,∴设x=3k,y=2k,则,故选:A.【点睛】本题主要考查了比例的性质,正确用一个未知数k表示出x,y的值是解题关键.6、C【解析】【分析】如图,记与的交点为记与的交点为过作于过作于再证明,可得再利用勾股定理可得答案.【详解】解:如图,记与的交点为记与的交点为过作于过作于正方形则(全等三角形的对应高相等)故选C【点睛】本题考查的是正方形的性质,全等三角形的判定与性质,证明是解本题的关键.7、D【解析】【分析】根据最简二次根式的定义即被开方数不含分母,也不含能开的尽方的因数或因式,判断即可.【详解】解:A.,故A不符合题意;B.,故B不符合题意;C.,故C不符合题意;D.是最简二次根式,故D符合题意;故选:D.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式的定义是解题的关键.8、A【解析】【分析】根据正方形的性质,矩形的性质逐一进行判断即可.【详解】解:A中对角线互相垂直,是正方形具有而矩形不具有,故符合题意;B中对角线相等,正方形具有而矩形也具有,故不符合题意;C中对角互补,正方形具有而矩形也具有,故不符合题意;D中四个角相等,正方形具有而矩形也具有,故不符合题意;故选:A.【点睛】本题考查了正方形的性质,矩形的性质.解决本题的关键是对正方形,矩形性质的灵活运用.二、填空题1、【解析】【分析】根据题意,AM=EF,利用三个直角的四边形是矩形,得到EF=AP,得AM=AP,当AP最小时,AM有最小值,根据垂线段最短,计算AP的长即可.【详解】∵∠BAC=90°,AB=3,AC=4,∴BC==5,∴BC边上的高h=,∵∠BAC=90°,PE⊥AB,PF⊥AC,∴四边形AEPF是矩形,∴AP=EF,∵∠BAC=90°,M为EF的中点,∴AM=EF,∴AM=AP,∴当AP最小时,AM有最小值,根据垂线段最短,当AP为BC上的高时即AP=h时最短,∴AP的最小值为,∴AM的最小值为,故答案为:.【点睛】本题考查了矩形的判定和性质,直角三角形的性质,勾股定理,垂线段最短原理,熟练掌握矩形的判定和性质,直角三角形的性质是解题的关键.2、2【解析】【分析】方法一:根据正方形边长求出面积;方法二根据正方形是特殊的菱形,所以正方形面积等于对角线乘积的一半.【详解】解:方法一:四边形是正方形,,,由勾股定理得,,.方法二:因为正方形的对角线长为2,所以面积为:.故答案为:2.【点睛】本题考查了正方形的性质,解题的关键是掌握正方形的性质.3、2【解析】【分析】根据一元二次方程根的判别式求解即可.【详解】解:实数根的个数为2故答案为:2.【点睛】此题考查了一元二次方程根的判别式,当Δ大于0时,有两个不同的实根;当Δ等于0时,有两个相同的实根;当Δ小于0时,无实根,正确理解根的判别式是解题的关键.4、-2【解析】【分析】直接利用根与系数的关系得到x1x2的值.【详解】解:∵x1、x2为一元二次方程x2-3x-2=0的两根,∴x1x2=-2,故答案为:-2.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1•x2=.5、【解析】【分析】根据三角形中位线定理可得,DE∥BC,从而得到△ADE∽△ABC,再根据相似三角形的性质,可得,即可求解.【详解】解:∵点D、E分别是AB、AC的中点,∴,DE∥BC,∴△ADE∽△ABC,∴,∵的面积为,∴,∴四边形BDEC的面积为.故答案为:【点睛】本题主要考查了三角形中位线定理,相似三角形的性质,熟练掌握三角形中位线定理,相似三角形的性质是解题的关键.6、【解析】【分析】根据判别式的意义得到Δ=(﹣2)2﹣4×1×(k﹣1)>0,然后解不等式即可.【详解】解:根据题意得Δ=(﹣2)2﹣4×1×(k﹣1)>0,解得:k<2.故答案为:k<2【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.7、3.6【解析】【分析】根据折叠的性质可得∠EDF=∠A,DF=AF,再由等边三角形的性质可得∠EDF=60°,∠BDE+∠CDF=∠BDE+∠BED=120°,从而得到∠CDF=∠BED,进而得到△BDE∽△CFD,再由BD:DE=2:3,可得到,即,即可求解.【详解】解:根据题意得:∠EDF=∠A,DF=AF,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∴∠EDF=60°,∴∠BDE+∠CDF=180°-∠EDF=120°,∵∠B=60°,∴∠BDE+∠BED=180°-∠B=120°,∴∠BDE+∠CDF=∠BDE+∠BED,∴∠CDF=∠BED,∴△BDE∽△CFD,∴,即,∵等边△ABC的边长为6,∴,解得:.故答案为:3.6【点睛】本题主要考查了等边三角形的性质,图形的折叠,相似三角形的判定和性质,熟练掌握等边三角形的性质,图形的折叠的性质,相似三角形的判定和性质是解题的关键.三、解答题1、2【解析】【分析】先根据平方差公式,二次根式的性质,零指数幂化简,再合并即可求解.【详解】解:原式=2.【点睛】本题主要考查了二次根式的混合运算,零指数幂,熟练掌握二次根式的性质,零指数幂法则是解题的关键.2、(1)4;(2)可能,面积为;(3)8【解析】【分析】(1)根据矩形的性质和等角的余角相等证得,∠DAP=∠BAE,根据相似三角形的判定和性质证得△ADP∽△ABE即可求解;(2)根据相似三角形的性质和直角三角形的两锐角互余证得∠PBE=90°,根据矩形的判定当∠APB=90°时可得四边形AEBP为矩形;利用勾股定理求得BD,再根据三角形的面积公式求得AP,进而求得AE即可求解;(3)根据题意画出图形证明点Q在直线Q1Q2上运动,由(2)中结论可知四边形AQ1BQ2是矩形,根据矩形对角线相等求得Q1Q2即可.(1)解:如图,∵四边形ABCD是矩形,AB=8,AD=4,∴∠DAB=90°,,∴,∵AP⊥AE,∴∠PAE=90°,∴∠DAP+∠PAB=∠PAB+∠BAE,∴∠DAP=∠BAE,∴△ADP∽△ABE,∴,∴;(2)解:四边形AEBP可能为矩形.如图,由(1)得△ADP∽△ABE,∴∠ABE=∠ADB,∴∠PBE=∠PBA+∠ABE=∠PBA+∠ADB=90°,如图,当∠APB=90°时,∵∠APB=∠PAB=∠PBE=90°,∴四边形AEBP为矩形,在Rt△ABD中,AB=8,AD=4,由勾股定理得:,,,;(3)解:由(1)中,,∠DAB=∠PAE=90°,∴△ADB∽△APE,∴∠ADB=∠APE,如图,当点P在点D处时,Q在Q1处,即AQ1⊥BD,作AQ2⊥PE,∴∠AQ1D=∠AQ2P=90°,∴△ADQ1∽△APQ2,∴,∠DAQ1=∠PAQ2,∵∠DAP=∠DAQ1+∠PAQ1=∠PAQ1+∠PAQ2=∠Q1AQ2,∴△ADP∽△AQ1Q2,∴∠AQ1Q2=∠ADP,∴∠BQ1Q2=90°-∠AQ1Q2=90°-∠ADP=∠ABD,因此点Q在直线Q1Q2上运动,故当点P从点D运动到点B时,点Q由Q1运动到如图2中的Q2位置,则点Q运动的距离为Q1Q2的长度.此时,∠DAP=∠DAB=∠DAQ1+∠PAQ1=∠PAQ1+∠PAQ2=∠Q1AQ2=90°,又∵∠AQ1D=∠AQ2P=90°,∴四边形AQ1BQ2是矩形,∴Q1Q2=AB=8,即点Q运动的距离为8.图2图3【点睛】本题考查相似三角形的判定与性质、矩形的判定与性质、直角三角形的性质、等角的余角相等、勾股定理等知识,熟练掌握相关知识的联系与运用是解答的关键.3、(1)(2)【解析】【分析】(1)应用二次根式的加减法则,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.进行计算即可得出答案;(2)先去括号,合并同类二次根式即可得出答案.(1)解:原式;(2)(2)原式.【点睛】本题主要考查了二次根式的加减,熟练掌握二次根式的加减运算法则进行计算是解决本题的关键.4、(1)3(2)3(3)【解析】【分析】(1)作AEl,交BD的延长线于E,根据已知条件求得△CPA’是等腰直角三角形,然后得到△BEA’是等腰直角三角形,从而求得A’B的值;(2)作AEl,交BD的延长线于E,根据已知条件求得BE、A’E,然后根据勾股定理即可求得A’B,从而求得AP+BP的值;(3)设AC=5m−3,PC=1,则PA=;设BD=8−5m,PD=3,则PB=,结合(2)即可求解.(1)解:作A’El,交BD的延长线于E,如图3,∵AA’⊥l,BD⊥l,∴DE⊥A’E∴四边形A’EDC是矩形,∵CP=AC=1∴CP=A’C∴△CPA’是等腰直角三角形,∴∠CA’P=45°∵A’El,∴∠CA’E=90°∴∠BA’E=45°∴△BEA’是等腰直角三角形,∵A’E=CP+DP=3∴BE=A’E=3∴A’B=∴AP+BP=A’B=3故答案为:3;(2)作A’El,交BD的延长线于E,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论