




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西延安市实验中学7年级数学下册变量之间的关系重点解析考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如表是加热食用油的温度变化情况:时间油温王红发现,烧了时,油沸腾了,则下列说法不正确的是()A.没有加热时,油的温度是 B.加热,油的温度是C.估计这种食用油的沸点温度约是 D.每加热,油的温度升高2、下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对3、小明带了2元钱去买笔,每支笔的价格是0.5元,那么小明买完笔后剩下的钱数y(元)与买到的笔的数量x(支)之间的函数图象大致是().A. B.C. D.4、是饮水机的图片.饮水桶中的水由图1的位置下降到图2的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图象可能是()A. B. C. D.5、刘师傅到加油站加油,如图是所用的加油机上的数据显示牌,则其中的变量是().A.金额 B.单价 C.数量 D.金额和数量6、李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)7、下表是某报纸公布的世界人口数据情况:表中的变量()年份19571974198719992010人口数30亿40亿50亿60亿70亿A.仅有一个,是时间(年份) B.仅有一个,是人口数C.有两个,一个是人口数,另一个是时间(年份) D.一个也没有8、已知声音在空气中的传播速度与空气的温度有关,在一定范围内,其关系如下表所示:温度/0102030传播速度/318324330336342348下列说法错误的是()A.自变量是温度,因变量是传播速度 B.温度越高,传播速度越快C.当温度为时,声音可以传播 D.温度每升高,传播速度增加9、一个长方形的周长为30,则长方形的面积y与长方形一边长x的关系式为()A.y=x(15-x) B.y=x(30-x) C.y=x(30-2x) D.y=x(15+x)10、在圆的周长公式C=2πr中,下列说法正确的是()A.C,π,r是变量,2是常量 B.C,π是变量,2,r是常量C.C,r是变量,2,π是常量 D.以上都不对第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图所示,长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,余下另个长方形的面积S(cm2)与x(cm)的关系式可表示为_____.2、夏季高山上的温度从山脚起每升高100米降低0.7℃,已知山脚下的温度是23℃,则温度y(℃)与上升高度x(米)之间的关系式为_____________.3、一个弹簧,不挂物体时长为10厘米,挂上物体后弹簧会变长,每挂上1千克物体,弹簧就会伸长1.5cm.如果挂上的物体的总质量为x千克时,弹簧的长度为为ycm,那么y与x的关系可表示为y=______.4、圆的半径为,圆的面积与半径之间有如下关系:.在这关系中,常量是______.5、长方形的长为x,宽为8,周长为y,则y与的关系式为__________.(不必写出自变量的取值范围)6、如图所示,甲、乙两车在某时间段内速度随时间变化的图象.下列结论:①甲的速度始终保持不变;②乙车第12秒时的速度为32米/秒;③乙车前4秒行驶的总路程为48米.其中正确的是_______________.(填序号)7、小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克瓜到市场上去销售,销售了40kg西瓜之后,余下的每千克降价0.4元,全部售完销售金额与售出西瓜的千克数之间的关系如图所示,小明这次卖瓜赚________元.8、一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图所示,则慢车比快车早出发______小时,快车追上慢车行驶了______千米,快车比慢车早______小时到达B地.从A地到B地快车比慢车共少用了______小时.9、如图是2020年1月15日至2月2日全国(除湖北省)新冠肺炎新增确诊人数的变化曲线,则下列说法:①自变量为时间,确诊总人数是时间的函数;②1月23号,新增确诊人数约为150人;③1月25号和1月26号,新增确诊人数基本相同;④1月30号之后,预测新增确诊人数呈下降趋势,其中正确的是____________.(填上你认为正确的说法的序号)10、长方形的周长为20,宽为x.若设长方形的面积为S,则面积S与宽x之间的关系是________.三、解答题(6小题,每小题10分,共计60分)1、星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?2、观察下图,回答问题.(1)反映了哪两个变量之间的关系?(2)点A,B分别表示什么?(3)说一说速度是怎样随时间变化而变化的;(4)你能找到一个实际情境,大致符合下图所刻画的关系吗?3、已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与用铝量有如下关系:底面半径x(cm)1.62.02.42.83.23.64.0用铝量y(cm3)6.96.05.65.55.76.06.5(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由;4、巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?5、一根长的弹簧,一端固定,如果另一端挂上物体,那么在弹性范围内,物体的质量每增加,弹簧伸长.(1)填写下表:所挂物体的质量/1234…弹簧的总长度/…(2)如何表示在弹性范围内所挂物体的质量与弹簧的总长度之间的数量关系?6、已知,如图,在直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8.P是线段AC上的一个动点,当点P从点C向点A运动时,运动到点A停止,设PC=x,△ABP的面积为y.求y与x之间的关系式.-参考答案-一、单选题1、B【分析】根据题意由表格可知:t=0时,y=10,即没有加热时,油的温度为10;每增加10秒,温度上升20℃,则t=50时,油温度y=110;t=110秒时,温度y=230,以此进行分析判断即可.【详解】解:从表格可知:t=0时,y=10,即没有加热时,油的温度为10;每增加10秒,温度上升20,则50秒时,油温度110;110秒时,温度为,A、C、D均可以得出.故选:B.【点睛】本题考查函数的表示方法,熟练掌握并能够通过表格确定自变量与因变量的变化关系是解题的关键.2、C【详解】表示函数的方法有三种:解析法、列表法和图象法.解:A、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误;B、图象能直观的表示两个变量间的数量关系,故错误;C、借助表格可以表示出因变量随自变量的变化情况,正确;D、以上说法都不对,错误;故选C.3、D【分析】根据题意列出函数解析式,进而根据实际意义求得函数图像,注意自变量的取值范围.【详解】依题意,(为正整数)可以取得,对应的的值为,故选D【点睛】本题考查了根据实际问题列出函数关系式,变量与函数图像,结合实际是解题的关键.4、C【分析】水位随着水减少而下降,且饮水机是圆柱形,是同等变化的下降.【详解】根据图片位置分析:水减少的体积随着水位下降的高度而增加,且饮水机是圆柱形,所以均匀增加故答案选:C【点睛】本题考查用图象法表示变量之间的关系,掌握变量之间的变化关系解题关键.5、D【分析】根据常量与变量的定义即可判断.【详解】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:D.【点睛】本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.6、B【详解】由实际问题抽象出函数关系式关键是找出等量关系,本题等量关系为“用篱笆围成的另外三边总长应恰好为24米”,结合BC边的长为x米,AB边的长为y米,可得BC+2AB=24,即x+2y=24,即y=-x+12.因为菜园的一边是足够长的墙,所以0<x<24.故选B.7、C【分析】根据变量的定义直接判断即可.【详解】解;观察表格,时间在变,人口在变,故正确;故选:.【点睛】本题考查了变量的定义,解题关键是明确变量的定义,能够正确判断.8、C【分析】根据所给表格,结合变量和自变量定义可得答案.【详解】解:A、自变量是温度,因变量是传播速度,故原题说法正确;B、温度越高,传播速度越快,故原题说法正确;C、当温度为10℃时,声音5s可以传播1680m,故原题说法错误;D、温度每升高10℃,传播速度增加6m/s,故原题说法正确;故选:C.【点睛】此题主要考查了常量与变量和通过表格获取信息,关键是掌握在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.9、A【详解】∵长方形的周长为30,其中一边长为,∴该长方形的另一边长为:,∴该长方形的面积:.故选A.10、C【分析】常量就是在变化过程中不变的量,变量是指在变化过程中变化的量.【详解】解:C,r是变量,2、π是常量.故选:C.【点睛】本题主要考查了常量,变量的定义,是需要识记的内容.二、填空题1、S=-6x+48【分析】先表示出新矩形的长,再求其面积.【详解】∵长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,∴余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为:S=6(8-x).即S=-6x+48.故答案是:S=-6x+48.【点睛】考查了列函数关系式,解题关键是正确表示出新矩形的长,再根据面积公式得到关系式.2、【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;故答案为y=23-0.007x.【点睛】本题考查了列函数解析式,理解每升高l00m降低0.7℃,则每上升1m,降低0.007℃是关键.3、10+1.5x【解析】【分析】根据所挂物体与弹簧长度之间的关系得出函数解析式即可,根据函数的定义判断自变量及因变量.弹簧的总长度y(cm)可以表示为y=10+1.5x【详解】y=10+1.5x,所挂物体总质量x,弹簧的总长度y【点睛】此题考查二元一次函数的应用,难度不大4、π【分析】利用常量定义可得答案.【详解】解:公式S=πR2中常量是π,故答案为:π.【点睛】本题主要考查了常量,关键是掌握在一个变化的过程中,数值始终不变的量称为常量.5、y=2x+16【分析】根据周长公式计算即可得出答案.【详解】由周长公式可得:故答案为.【点睛】本题考查了由实际问题列函数关系式,掌握长方形的周长公式是解决本题的关键.6、②③.【分析】根据题意和函数图象中的数据,可以判断各个小题是否正确,从而可以解答本题.【详解】(1)从图像可以看出甲的速度从0加速到32米/秒,速度在变化,故①错误;(2)从图像可以看出乙在第12秒时速度为20米/秒,故②正确;(3)乙车前4秒行驶的路程为:(米)故③正确.故答案为:②③.【点睛】本题考查函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.要注意坐标系中y轴表示速度.7、36【分析】设y与x的函数关系式为y=kx,根据图像求出解析式为y=1.6x,再求出求出降价后销售的西瓜数,最后将降价前和降价后赚的钱相加即可.【详解】解:设y与x函数的解析式是y=kx,把x=40,y=64代入得:40k=64,解得k=1.6,则函数的解析式是y=1.6x,∵价前西瓜售价每千克1.6元.降价0.4元后西瓜售价每千克1.2元.降价后销售的西瓜为(76-64)÷1.2=10(千克)∴76-50×0.8=76-40=36(元),即小华这次卖瓜赚了36元钱.故答案为:36.【点睛】本题重点考查了一次函数的图象及一次函数的应用,关键是根据y与x的函数关系式解答.8、227646【分析】根据横纵坐标的意义,分别分析得出即可.【详解】由图象直接可得出:一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发2小时,快车追上慢车行驶了276千米,快车比慢车早4小时到达B地,从A地到B地快车比慢车共少用了18-(14-2)=6小时.故答案为2,276,4,6.【点睛】此题主要考查了函数图象,从图象上获取正确的信息是解题关键.9、②③④【分析】观察图中曲线中的数据变化,分析数据即可解题.【详解】解:由图象信息得,自变量为时间,因变量为新增确诊人数,新增确诊人数是时间的函数,故①错误;1月23号,新增确诊人数约为150人,故②正确;1月25号和1月26号,新增确诊人数基本相同,故③正确;1月30号之后,预测新增确诊人数呈下降趋势,故④正确,故正确的有②③④,故答案为:②③④.【点睛】本题考查常量与变量,函数的图象等知识,是基础考点,难度较易,掌握相关知识是解题关键..10、【分析】先用x表示出长方形的长,再根据长方形的面积公式解答即可.【详解】解:因为长方形的周长为20,宽为x,所以长方形的长为(10-x),所以长方形的面积S与宽x的关系式是:.故答案为:.【点睛】本题考查了用关系式表示变量之间的关系,准确掌握长方形的周长与面积公式是解题的关键.三、解答题1、(1)玲玲到离家最远的地方需要12时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)玲玲在返回的途中最快,速度为:15千米/时;(4)10千米/时.【分析】(1)利用图中的点的横坐标表示时间,纵坐标表示离家的距离,进而得出答案;(2)休息是路程不再随时间的增加而增加;(3)往返全程中回来时候速度最快,用距离除以所用时间即可;(4)用玲玲全称所行的路程除以所用的时间即可.【详解】观察图象可知:(1)玲玲到达离家最远的地方是在12时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)在返回的途中,速度最快,速度为:30÷(15﹣13)=15千米/时;(4)玲玲全程骑车的平均速度为:(30+30)÷(15﹣9)=10千米/时.【点睛】本题是一道函数图象的基础题,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,因此本题实际上是考查同学们的识图能力.2、(1)反映速度与时间的关系;(2)A点表示当时间过了3分钟后,速度为40千米/时,B点表示当时间为15分钟时,速度为0;(3)见解析;(4)见解析【分析】(1)根据横坐标和纵坐标进行判断即可;(2)根据图象进行判断即可;(3)根据图象进行判断即可;(4)根据图象写出一个实际情境即可.【详解】(1)由图象可得,该图象反映速度与时间的关系;(2)A点表示当时间过了3分钟后,速度为40千米/时,B点表示当时间为15分钟时,速度为0;(3)当时间在0~3分钟时,速度随时间的增加而增大,当时间在3~6分钟时,速度保持40千米/时不变,6到7.5分钟时速度从40千米/时增加到60千米/时,7.5到9分钟时保持60千米/时,9到10.5分钟时,从60千米/时降到40千米/时,10.5到12分钟时,保持40千米/时,12到15分钟时,速度从40千米/时降到0;(4)小明从家开车到图书馆借书,汽车从启动到速度为40km/h用了3分钟,此后3分钟匀速行驶,然后用了1.5分钟加速到60km/h,然后再匀速行驶1.5分钟,随后用1.5分钟减速到40km/h,然后再匀速行驶1.5分钟,最后用3分钟减速行驶到停止.【点睛】本题考查了图象与变量的问题,掌握图象与变量的关系是解题的关键.3、(1)反映了易拉罐底面半径和用铝量的关系,其中,易拉罐底面半径为自变量,用铝量为因变量;(2)易拉罐需要的用铝量为5.6cm3;(3)易拉罐底面半径为2.8cm时比较合适,因为此时用铝量较少,成本低.【分析】(1)用铝量是随底面半径的变化而变化的,因而底面半径为自变量,用铝量为因变量;(2)根据表格可以直接得到;(3)选择用铝量最小的一个即可;【详解】(1)反映了易拉罐底面半径和用铝量的关系,其中,易拉罐底面半径为自变量,用铝量为因变量.(2)当底面半径为2.4cm时,易拉罐需要的用铝量为5.6cm3.(3)易拉罐底面半径为2.8cm时比较合适,因为此时用铝量较少,成本低.【点睛】本题考查函数的自变量与函数变量,根据表格理解:随底面半径的增大,用铝量的变化情
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年庆阳石化分公司春季招聘(5人)考前自测高频考点模拟试题完整答案详解
- 2025年TOC自动在线监测仪项目申请报告
- 2025年射频同轴连接器项目提案报告范文
- 我的学习用品小伙伴写物作文(13篇)
- 2025年宣城宁国市中医院招聘医疗卫生人才6人考前自测高频考点模拟试题附答案详解(突破训练)
- 2025金沙酱酒酒业投资集团有限公司模拟试卷及完整答案详解一套
- 企业社会责任感践行承诺书3篇
- 安全生产运行与预防承诺书5篇
- 2025甘肃张掖市肃南县居家养老服务中心招聘2人考前自测高频考点模拟试题及答案详解(名校卷)
- 山东省部分学校2024-2025学年高三上学期期末学业水平质量检测地理试题(解析版)
- 过敏性休克完整版本
- 方位角及坐标计算表格
- MH 5006-2015民用机场水泥混凝土面层施工技术规范
- MOOC 跨文化交际通识通论-扬州大学 中国大学慕课答案
- FZT 62011.2-2016 布艺类产品 第2部分:餐用纺织品
- (正式版)SHT 3078-2024 立式圆筒形料仓工程设计规范
- 收银标准化培训课件
- 微积分课件反常积分
- 2024年山东黄金集团有限公司招聘笔试参考题库附带答案详解
- 二年级《小鲤鱼跃龙门》阅读题及答案
- 棉纱仓库管理制度
评论
0/150
提交评论