难点解析人教版8年级数学下册《平行四边形》定向攻克试题(含答案解析版)_第1页
难点解析人教版8年级数学下册《平行四边形》定向攻克试题(含答案解析版)_第2页
难点解析人教版8年级数学下册《平行四边形》定向攻克试题(含答案解析版)_第3页
难点解析人教版8年级数学下册《平行四边形》定向攻克试题(含答案解析版)_第4页
难点解析人教版8年级数学下册《平行四边形》定向攻克试题(含答案解析版)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学下册《平行四边形》定向攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移2cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为()A.1 B. C..2 D.22、如图,矩形ABCD中,AC交BD于点O,且AB=24,BC=10,将AC绕点C顺时针旋转90°至CE.连接AE,且F、G分别为AE、EC的中点,则四边形OFGC的面积是()A.100 B.144 C.169 D.2253、如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB于点G,连接DG、BF,给出以下结论:①△DAG≌△DFG;②BG=2AG;③BF//DE;④S△BEF=.其中所有正确结论的个数是()A.1 B.2 C.3 D.44、如图,在长方形ABCD中,AB=6,BC=8,点E是BC边上一点,将△ABE沿AE折叠,使点B落在点F处,连接CF,当△CEF为直角三角形时,则BE的长是()A.4 B.3 C.4或8 D.3或65、在ABCD中,添加以下哪个条件能判断其为菱形()A.AB⊥BC B.BC⊥CD C.CD⊥AC D.AC⊥BD第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD是__________.2、菱形的对角线之比为3:4,且面积为24,则它的对角线分别为________.3、如图,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.4、如图,在△ABC中,D,E分别是边AB,AC的中点,∠B=50°.现将△ADE沿DE折叠点A落在三角形所在平面内的点为A1,则∠BDA1的度数为_____.5、如图,Rt△ABD中,∠D=90°,AB=8,BD=4,在BD延长线上取一点C,使得DC=BD,在直线AD左侧有一动点P满足∠PAD=∠PDB,连接PC,则线段CP长的最大值为________.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,过点作于点,点在边上,,连接,.(1)求证:四边形是矩形;(2)若,,,求证:平分.2、如图,ABCD的对角线AC、BD相交于点O,BD12cm,AC6cm,点E在线段BO上从点B以1cm/s的速度向点O运动,点F在线段OD上从点O以2cm/s的速度向点D运动.

(1)若点E、F同时运动,设运动时间为t秒,当t为何值时,四边形AECF是平行四边形.(2)在(1)的条件下,当AB为何值时,AECF是菱形;(3)求(2)中菱形AECF的面积.3、如图所示,在△ABC中,AD是边BC上的高,CE是边AB上的中线,G是CE的中点,AB=2CD,求证:DG⊥CE.

4、已知:▱ABCD的对角线AC,BD相交于O,M是AO的中点,N是CO的中点,求证:BM∥DN,BM=DN.

5、如图:已知△BCD是等腰直角三角形,且∠DCB=90°,过点D作AD∥BC,使AD=BC,在AD上取一点E,连结CE,点B关于CE的对称点为B1,连结B1D,并延长B1D交BA的延长线于点F,延长CE交B1F于点G,连结BG.(1)求证:∠CBG=∠CDB1;(2)若AE=DE,BC=10,求BG长;(3)在(2)的条件下,H为直线BG上一点,使△HCG为等腰三角形,则所有满足要求的BH的长是.(直接写出答案)-参考答案-一、单选题1、C【解析】【分析】根据题意连接BD,过点E作EF⊥AC于点F,根据菱形的性质可以证明三角形ABD是等边三角形,根据平移的性质可得AD∥A′E,可得,,进而求出A′E,再利用30度角所对直角边等于斜边的一半即可得出结论.【详解】解:如图,连接BD,过点E作EF⊥AC于点F,∵四边形ABCD是菱形,∴AD=AB,BD⊥AC,∵∠BAD=60°,∴三角形ABD是等边三角形,∵菱形ABCD的边长为6cm,∴AD=AB=BD=6cm,∴AG=GC=3(cm),∴AC=6(cm),∵AA′=2(cm),∴A′C=4(cm),∵AD∥A′E,∴,∴,∴A′E=4(cm),∵∠EA′F=∠DAC=∠DAB=30°,∴EF=A′E=2(cm).故选:C.【点睛】本题考查菱形的性质以及等边三角形的判定与性质和平移的性质,解决本题的关键是掌握菱形的性质.2、C【解析】【分析】先根据矩形的性质、三角形中位线定理可得,再根据平行四边形的判定可得四边形为平行四边形,然后根据旋转的性质可得,从而可得,最后根据正方形的判定可得四边形为正方形,由此即可得.【详解】解:四边形为矩形,,,分别为的中点,,,四边形为平行四边形,又绕点顺时针旋转,,,平行四边形为正方形,四边形的面积是,故选:C.【点睛】本题考查了矩形的性质、正方形的判定与性质、三角形中位线定理等知识点,熟练掌握正方形的判定与性质是解题关键.3、D【解析】【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定Rt△ADG≌Rt△FDG;②再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,即可判断;③由△BEF是等腰三角形,证明∠EBF=∠DEC,;④结合①可得AG=GF,根据等高的两个三角形的面积的比等于底与底的比即可求出三角形BEF的面积.【详解】解:①由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,在Rt△ADG和Rt△FDG中,∴Rt△ADG≌Rt△FDG(HL),故①正确;②∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12−x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12−x)2,解得:x=4,∴AG=GF=4,BG=8,BG=2AG,故②正确;③∵EF=EC=EB,∴∠EFB=∠EBF,∵∠DEC=∠DEF,∠CEF=∠EFB+∠EBF,∴∠DEC=∠EBF,∴BF//DE,故③正确;④∵S△GBE=BE•BG=×6×8=24,∵GF=AG=4,EF=BE=6,∴,∴S△BEF=S△GBE=×24=,故④正确.综上可知正确的结论的是4个.故选:D.【点睛】本题考查了图形的翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.4、D【解析】【分析】当为直角三角形时,有两种情况:①当点F落在矩形内部时连接,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点A、F、C共线,即沿折叠,使点B落在对角线上的点F处,则,,可计算出然后利用勾股定理求解即可;②当点F落在边上时.此时为正方形,由此即可得到答案.【详解】解:当为直角三角形时,有两种情况:①当点F落在矩形内部时,如图所示.连接,在中,,,∴,∵△ABE沿折叠,使点B落在点F处,∴,BE=EF,当为直角三角形时,只能得到,∴∴点A、F、C共线,即△ABE沿折叠,使点B落在对角线上的点F处,∴,∴,设BE=EF=x,则EC=BC-BE=8-x,∵,∴,解得,∴BE=3;②当点F落在边上时,如图所示,由折叠的性质可知AB=AF,BE=EF,∠AEF=∠B=90°,∠FEC=90°,∴为正方形,∴,综上所述,BE的长为3或6.故选D.【点睛】本题考查折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质,正方形的性质与判定以及勾股定理.解题的关键是要注意本题有两种情况,需要分类讨论,避免漏解.5、D【解析】【分析】根据对角线互相垂直的平行四边形是菱形,结合选项找到对角线互相垂直即可求解.【详解】A、∵AB⊥BC,∴∠ABC=90°,又∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;故选项A不符合题意;B、C选项,同A选项一样,均为邻边垂直,ABCD是矩形;故选项B、C不符合题意;D、∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形;故选项D符合题意故选D【点睛】本题考查了菱形的判定,掌握菱形的判定定理是解题的关键.二、填空题1、菱形【解析】【分析】先在坐标系中画出四边形ABCD,由A、B、C、D的坐标即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.【详解】解:图象如图所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC=3,OB=OD=2,∴四边形ABCD为平行四边形,∵AC⊥BD,∴四边形ABCD为菱形,故答案为:菱形.【点睛】本题主要考查了菱形的判定,坐标与图形,解题的关键在于能够熟练掌握菱形的判定条件.2、6和8##8和6【解析】【分析】根据比例设两条对角线分别为3x、4x,再根据菱形的面积等于两对角线乘积的一半列式求出x的值即可.【详解】解:设两条对角线分别为3x、4x,根据题意得,×3x•4x=24,解得x=2(负值舍去),∴菱形的两对角线的长分别为,.故答案为:6和8.【点睛】本题考查了菱形的面积,主要利用了菱形的对角线互相垂直平分的性质,菱形的面积的求法,需熟记.3、【解析】【分析】由正方形的对称性可知,PB=PD,当B、P、E共线时PD+PE最小,求出BE即可.【详解】解:∵正方形中B与D关于AC对称,∴PB=PD,∴PD+PE=PB+PE=BE,此时PD+PE最小,∵正方形ABCD的面积为18,△ABE是等边三角形,∴BE=3,∴PD+PE最小值是3,故答案为:3.【点睛】本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键.4、80°【解析】【分析】由翻折的性质得∠ADE=∠A1DE,由中位线的性质得DE//BC,由平行线的性质得∠ADE=∠B=50°,即可解决问题.【详解】解:由题意得:∠ADE=∠A1DE;∵D、E分别是边AB、AC的中点,∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°−100°=80°.故答案为:80°.【点睛】本题主要考查了翻折变换及其应用问题;同时还考查了三角形的中位线定理等几何知识点.熟练掌握各性质是解题的关键.5、##【解析】【分析】如图,取AD的中点O,连接OP、OC,然后求出OP、OC的长,最后根据三角形的三边关系即可解答.【详解】解:如图,取AD的中点O,连接OP、OC∵∠PAD=∠PDB,∠PDB+∠ADP=90°,∴∠PAD+∠ADP=90°,即∠APD=90°,∵AO=OD,∴PO=OA=AD,∴∴OP=,∵BD=CD=4,OD=,∴∵PC≤OP+OC,∴PC≤,∴PC的最大值为.故填:.【点睛】本题主要考查了直角三角形斜边中线的性质、勾股定理等知识点,解题的关键在于正确添加常用辅助线,进而求得OP、OC的长.三、解答题1、(1)见解析;(2)见解析【分析】(1)先证明四边形是平行四边形,结合,从而可得结论;(2)先证明,再求解证明证明从而可得结论.【详解】(1)证明:四边形是平行四边形,.即,,四边形是平行四边形.,,四边形是矩形;(2)四边形是平行四边形,,.四边形是矩形;在中,由勾股定理,得,,,,即平分.【点睛】本题考查的是勾股定理的应用,角平分线的定义,平行四边形的判定与性质,矩形的判定,证明四边形是平行四边形是解(1)的关键,证明是解(2)的关键.2、(1)t=2s;(2)AB=;(3)24【分析】(1)若是平行四边形,所以BD=12cm,则BO=DO=6cm,故有6-t=2t,即可求得t值;

(2)若是菱形,则AC垂直于BD,即有,故AB可求;

(3)根据四边形AECF是菱形,求得,根据平行四边形的性质得到BO=OD,求得BE=DF,列方程到底BE=DF=2,求得EF=8,于是得到结论.【详解】解:(1)∵四边形ABCD为平行四边形,∴AO=OC,EO=OF,∵BO=OD=6cm,∴,∴,∴,∴当t为2秒时,四边形AECF是平行四边形;(2)若四边形AECF是菱形,则,,;∴当AB为时,平行四边形是菱形;(3)由(1)(2)可知当t=2s,AB=时,四边形AECF是菱形,∴EO=6−t=4,∴EF=8,∴菱形AECF的面积=.【点睛】本题考查了平行四边形的判定和性质和菱形的判定和性质,勾股定理,菱形的面积的计算.3、见解析【分析】连接DE,根据直角三角形的性质得到DE=AB,再根据AB=2CD,得到CD=AB,从而可得CD=DE,根据等腰三角形的三线合一证明即可.【详解】证明:连接DE,如图:

∵AD是边BC上的高,CE是边AB上的中线,∴AD⊥BD,E是AB的中点,∴DE=AB,∵AB=2CD,∴CD=AB,∴CD=DE,∵G是CE的中点,∴DG⊥CE.【点睛】本题考查了直角三角形的性质、等腰三角形的判定和性质.解题的关键是掌握直角三角形的性质、等腰三角形的判定和性质,明确在直角三角形中,斜边上的中线等于斜边的一半.4、见解析【分析】连接,根据平行四边形的性质可得AO=OC,DO=OB,由M是AO的中点,N是CO的中点,进而可得MO=ON,进而即可证明四边形是平行四边形,即可得证.【详解】如图,连接,

∵四边形ABCD为平行四边形,∴AO=OC,DO=OB.∵M为AO的中点,N为CO的中点,即∴MO=ON.四边形是平行四边形,∴BM∥DN,BM=DN.【点睛】本题考查了平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.5、(1)证明过程见解析;(2)BG的长为4;(3)2或6﹣4或或6+4【分析】(1)连结BB1交CG于点M,交CD于点Q,证明四边形ABCD是正方形,再根据对称的性质得到CE垂直平分BB1,得到△BCG≌△B1CG(SSS),即可得解;(2)设BG交AD于点N,得到△BCQ≌△CDE(ASA),得到CQ=DE=5,BQ=CE=5,再根据勾股定理得到BM,最后利用勾股定理计算即可;(3)根据点G的位置不同分4种情况进行讨论计算即可;【详解】(1)证明:如图1,连结BB1交CG于点M,交CD于点Q,∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵BC=DC,∠BCD=90°,∴四边形ABCD是正方形,∵点B1与点B关于CE对称,∴CE垂直平分BB1,∴BC=B1C,BG=B1G,∵CG=CG,∴△BCG≌△B1CG(SSS),∴∠CBG=∠CB1G,∵DC=B1C,∴∠CDB1=∠CB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论