难点解析陕西延安市实验中学7年级数学下册变量之间的关系同步测评试卷(解析版含答案)_第1页
难点解析陕西延安市实验中学7年级数学下册变量之间的关系同步测评试卷(解析版含答案)_第2页
难点解析陕西延安市实验中学7年级数学下册变量之间的关系同步测评试卷(解析版含答案)_第3页
难点解析陕西延安市实验中学7年级数学下册变量之间的关系同步测评试卷(解析版含答案)_第4页
难点解析陕西延安市实验中学7年级数学下册变量之间的关系同步测评试卷(解析版含答案)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西延安市实验中学7年级数学下册变量之间的关系同步测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、李师傅到单位附近的加油站加油,如图是所用加油机上的显示屏所显示的内容,其中的常量是()A.金额 B.数量 C.单价 D.金额和数量2、下表是研究弹簧长度与所挂物体质量关系的实验表格:所挂物体重量x(kg)12345弹簧长度y(cm)1012141618则弹簧不挂物体时的长度为().A.4cm B.6cm C.8cm D.10cm3、汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A. B. C. D.4、瓶子或者罐头盒等圆柱形的物体常常如图所示那样堆放着,随着层数的增加,物体总数也会发生变化,数据如表,则下列说法错误的是()层数n/层12345……物体总数y/个1361015……A.在这个变化过程中层数是自变量,物体总数是因变量B.当堆放层数为7层时,物体总数为28个C.物体的总数随着层数的增加而均匀增加D.物体的总数y与层数n之间的关系式为5、在圆的周长公式C=2πr中,下列说法正确的是()A.C,π,r是变量,2是常量 B.C,π是变量,2,r是常量C.C,r是变量,2,π是常量 D.以上都不对6、在进行路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则下列说法正确的是()A.s、v是变量 B.s、t是变量 C.v、t是变量 D.s、v、t都是变量7、下列各情境,分别描述了两个变量之间的关系:(1)一杯越晾越凉的开水(水温与时间的关系);(2)一面冉冉升起的旗子(高度与时间的关系);(3)足球守门员大脚开出去的球(高度与时间的关系);(4)匀速行驶的汽车(速度与时间的关系).依次用图象近似刻画以上变量之间的关系,排序正确的是()A.③④①② B.②①③④ C.①④②③ D.③①④②8、圆的周长公式是,那么在这个公式中,关于变量和常量的说法正确的是()A.2是常量,C、、r是变量 B.2、π是常量,C、r是变量C.2是常量,r是变量 D.2是常量,C、r是变量9、若代数式在实数范围内有意义,则的取值范围是()A. B. C.且 D.且10、如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、已知变量y与x的部分对应值如表格所示,则y与x的关系式是________.x…1234…y…12141618…2、如图所示,甲、乙两车在某时间段内速度随时间变化的图象.下列结论:①甲的速度始终保持不变;②乙车第12秒时的速度为32米/秒;③乙车前4秒行驶的总路程为48米.其中正确的是_______________.(填序号)3、夏季高山上的温度从山脚起每升高100米降低0.7℃,已知山脚下的温度是23℃,则温度y(℃)与上升高度x(米)之间的关系式为_____________.4、同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是_____℉.5、如图,一轮船从离A港10千米的P地出发向B港匀速行驶,30分钟后离A港26千米(未到达B港).设x小时后,轮船离A港y千米(未到达B港),则y与x之间的关系式为_____.6、摄氏温度与华氏温度之间的对应关系为,则其中变量是________,常量是________.7、小明早上步行去车站,然后坐车去学校.如图象中,能近似的刻画小明离学校的距离随时间变化关系的图象是_____.(填序号)8、表示函数的三种方法是:________,________,________.9、地面温度为15ºC,如果高度每升高1千米,气温下降6ºC,则高度h(千米)与气温t(ºC)之间的关系式为___________10、在圆周长公式中,随着的变化而变化,此问题中,______是常量,______和______是变量.三、解答题(6小题,每小题10分,共计60分)1、某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的).x(人)50010001500200025003000…y(元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,每月的乘车人数x与每月利润y分别是变量和变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)当每月乘车人数为4000人时,每月利润为多少元?2、如图,已知在RtABC中,,点D在斜边AB上,将ABC沿着过点D的一条直线翻折,使点B落在射线BC上的点处,连接并延长,交射线AC于E.(1)当点与点C重合时,求BD的长.(2)当点E在AC的延长线上时,设BD为x,CE为y,求y关于x函数关系式,并写出定义域.(3)连接,当是直角三角形时,请直接写出BD的长.3、如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为小时;(3)乙从出发起,经过小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?4、已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与用铝量有如下关系:底面半径x(cm)1.62.02.42.83.23.64.0用铝量y(cm3)6.96.05.65.55.76.06.5(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由;5、指出下列问题中的变量和常量:(1)某市的自来水价为4元/t.现要抽取若干户居民调查水费支出情况,记某户月用水量为吨,月应交水费为y元.(2)某地手机通话费为0.2元/.李明在手机话费卡中存入30元,记此后他的手机通话时间为,话费卡中的余额为w元.(3)水中涟漪(圆形水波)不断扩大,记它的半径为r,周长为C,圆周率(圆周长与直径之比)为.(4)把10本书随意放入两个抽昼(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y本.6、某城市居民用水实行阶梯收费每户每月用水量如果未超过20t,按每吨2.5元收费.如果超过20t,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.设某户每月用水量为xt,应收水费为y元.(1)分别写出每月用水量未超过20t和超过20t时y与x间的关系式.(2)若该城市某户4月份水费平均为每吨2.8元,求该户4月份用水多少吨?-参考答案-一、单选题1、C【分析】根据常量与变量的概念可直接进行求解.【详解】解:∵在一个变化过程中,数值始终不变的量是常量,∴其中的常量是单价;故选C.【点睛】本题主要考查了常量与变量,熟练掌握“在一个变化过程中,数值始终不变的量称为常量,数值发生变化的量称为变量”是解题的关键.2、C【分析】根据表格数据,设弹簧长度y与所挂物体重量x的关系式为,进而求得关系式,令即可求得弹簧不挂物体时的长度.【详解】设弹簧长度y与所挂物体重量x的关系式为,将,分别代入得,解得即,将,分别代入,符合关系式,当时,则,故选C.【点睛】本题考查了变量与表格,函数关系式,找到关系式是解题的关键.3、C【详解】试题分析:由题意可知,1小时以前的速度是60千米/时,而1小时之后的速度是100千米/时,速度越大倾斜角度越大,故选C考点:函数的图象4、C【分析】先根据表中数字的变化规律写出y和n之间的关系式,再根据每个选项的说法作出判断.【详解】解:∵物体总个数随着层数的变化而变化,∴A选项说法正确,不符合题意,根据表中数字的变化规律可知y=,当n=7时,y=28,∴B选项说法正确,不符合题意,根据表中数字的变化规律可知总数增加的越来越快,∴C选项说法错误,符合题意,根据表中数字的变化规律可知y=,∴D选项说法正确,不符合题意,故选:C.【点睛】本题主要考查用列表表示函数的应用,关键是要能根据表中的数据写出y与n之间的关系式.5、C【分析】常量就是在变化过程中不变的量,变量是指在变化过程中变化的量.【详解】解:C,r是变量,2、π是常量.故选:C.【点睛】本题主要考查了常量,变量的定义,是需要识记的内容.6、C【分析】根据常量和变量的定义判定,始终不变的量为常量【详解】s始终不变,是常量,v和t会变化,是变量故选:C【点睛】本题考查常量和变量的区分,注意,常量是始终不变的量,因此有些不变的字母也是常量.7、A【分析】根据题干对应图像中变量的变化趋势即可求解.【详解】解:(1)一杯越来越凉的水,水温随着时间的增加而越来越低,故③图象符合要求;(2)一面冉冉上升的旗子,高度随着时间的增加而越来越高,故④图象符合要求;(3)足球守门员大脚开出去的球,高度与时间成二次函数关系,故①图象符合要求;(4)匀速行驶的汽车,速度始终不变,故②图象符合要求;正确的顺序是③④①②.故选:A.【点睛】本题考查用图像表示变量之间的关系,关键是将文字描述转化成函数图像的能力.8、B【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【详解】解:圆的周长计算公式是c=2πr,C和r是变量,2、π是常量,故选:B.【点睛】本题主要考查了常量,变量的定义,识记的内容是解题的关键.9、A【分析】根据分式的分母不为零、二次根式的被开方数是非负数列出关于的不等式组,然后求得的取值范围.【详解】解:根据题意,得解之得:,故选:A.【点睛】本题综合考查了分式有意义的条件、二次根式有意义的条件,解答该题时,需要注意分式的分母不为零这一条件.10、D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.二、填空题1、【分析】本题考查用关系式法表示变量之间的关系,用关系式表示的变量间关系经常是根据题目中的已知条件和两个变量之间的关系,利用公式、变化规律或者数量关系得到等式.【详解】x每增加1,y增加2,易得当x=0时y=10,所以y=2x+10.【点睛】在做此类题时,如果发现x增加1时,y增加的数值固定,那么y=kx+b,k就是这个固定的值,b为x=0时y对应的值.2、②③.【分析】根据题意和函数图象中的数据,可以判断各个小题是否正确,从而可以解答本题.【详解】(1)从图像可以看出甲的速度从0加速到32米/秒,速度在变化,故①错误;(2)从图像可以看出乙在第12秒时速度为20米/秒,故②正确;(3)乙车前4秒行驶的路程为:(米)故③正确.故答案为:②③.【点睛】本题考查函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.要注意坐标系中y轴表示速度.3、【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;故答案为y=23-0.007x.【点睛】本题考查了列函数解析式,理解每升高l00m降低0.7℃,则每上升1m,降低0.007℃是关键.4、77【分析】把x=25直接代入解析式可得.【详解】当x=25时,y=×25+32=77故答案为77【点睛】考核知识点:求函数值.5、y=10+32x【解析】【分析】根据轮船的速度=(26-10)÷0.5=32千米/时,轮船离A港距离=10+行驶距离即可得出.【详解】解:∵轮船的速度=(26-10)÷0.5=32千米/时,∴y与x之间的关系式为:y=32x+10.故答案为y=32x+10.【点睛】此题主要考查了由实际问题抽象出函数关系式,根据题意,求出轮船的速度是解决本题的关键.6、C,F【解析】【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.【详解】,则其中的变量是C,F,常量是,故答案为C,F;;【点睛】此题考查常量与变量,解题关键在于掌握其定义7、④【分析】根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.【详解】①距离越来越大,选项错误;②距离越来越小,但前后变化快慢一样,选项错误;③距离越来越大,选项错误;④距离越来越小,且距离先变化慢,后变化快,选项正确;故答案为:④.【点睛】本题考查了函数图象,观察距离随时间的变化是解题关键.8、列表法解析式法图象法【分析】根据函数的三种表示方法:列表法、解析式法、图象法.进行填空即可.【详解】解:表示函数的三种方法是:列表法、解析式法、图象法.故答案为:列表法;解析式法;图象法.【点睛】此题主要考查函数的表示方法,解题的关键是熟知函数的三种方法是:列表法、解析式法、图象法.9、h=.【分析】升高h(千米)就可求得温度的下降值,进而求得h千米处的温度.【详解】高度h(千米)与气温t(℃)之间的关系式为:h=.【点睛】正确理解高度每升高1千米,气温下降6℃,的含义是解题关键.10、【分析】根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量可直接得到答案.【详解】解:根据定义,数值发生变化的量称为变量,数值始终不变的量称为常量,所以在中,是常量,r和C是变量.故答案为:;r;C【点睛】本题考查常量和变量的定义,理解定义是解答此题的关键.三、解答题1、(1)每月的乘车人数,每月利润;(2)2000人;(3)4000元【分析】(1)根据函数的定义即可求解;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,即可求解;(3)有表中的数据推理即可求解.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量;故答案为:每月的乘车人数,每月利润;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,故答案为:2000;(3)有表中的数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,利润为0元,故每月乘车人数为4000人时,每月的利润是(4000-2000)÷500×1000=4000元.【点睛】本题考查了根据表格与函数知识,正确读懂表格,理解表格体现变化趋势是解题关键.2、(1)BD=1;(2);(3)或.【分析】(1)由直角三角形中,30°角所对的直角边等于斜边的一半,解得AC的长,再根据勾股定理解得BC的长,根据折叠的性质可得,结合三角形外角性质可得,当点与点C重合时,可证明△ADC是等边三角形,最后由等边三角形的性质解题即可;(2)过D作于H,在中,设,由含30°角的直角三角形性质解得则,在中,设,,最后由解题即可;(3)设,先证明,当是直角三角形时,再分类讨论①当时或②当时,分别利用含30°角的直角三角形性质和勾股定理解得的值即可解题.【详解】解:(1)在Rt△ABC中,,,根据勾股定理得,,∵由折叠知,,,,当点与点C重合时,DC=DB,,∴△ADC是等边三角形,∴AD=AC=1,∴BD=AB-AD=1;(2)如图1,过D作于H,在中,设,则,在中,设,则,,;(3)设,在中,,,由(1)知,,是直角三角形,∴①当时,如图2,在中,,,在中,,根据勾股定理得,,即,解得,;②当时,如图3,同①的方法得,,综上所述,当是直角三角形时,满足条件的或【点睛】本题考查含30°角的直角三角形、三角形的外角、一次函数、勾股定理、等边三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.3、(1)10;(2)1;(3)3;(4)不一样,理由见解析;【分析】(1)根据t=0时甲乙两人的路程差即为两人的距离解答即可;(2)根据s不变的时间即为修车时间解答即可;(3)根据两人的函数图象的交点即为相遇,写出时间即可;(4)利用速度与时间路程的关系解答即可;【详解】解:(1)由图象可知,乙出发时,乙与甲相距10千米.故答案为10.(2)由图象可知,走了一段路程后,乙的自行车发生故障,停下来修车的时间为=1.5-0.5=1小时,故答案为1.(3)图图象可知,乙从出发起,经过3小时与甲相遇.故答案为3(4)乙骑自行车出故障前的速度与修车后的速度不一样.理由如下:乙骑自行车出故障前的速度=15千米/小时.与修车后的速度=10千米/小时.因为15>10,所以乙骑自行车出故障前的速度与修车后的速度不一样.【点睛】此题主要考查了学生从图象中读取信息的能力,以及路程、速度、时间的关系等知识,解题的关键是灵活运用图中信息解决问题,所以中考常考题型.4、(1)反映了易拉罐底面半径和用铝量的关系,其中,易拉罐底面半径为自

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论