考点解析新疆喀什区第二中学7年级数学下册第四章三角形专项训练试题_第1页
考点解析新疆喀什区第二中学7年级数学下册第四章三角形专项训练试题_第2页
考点解析新疆喀什区第二中学7年级数学下册第四章三角形专项训练试题_第3页
考点解析新疆喀什区第二中学7年级数学下册第四章三角形专项训练试题_第4页
考点解析新疆喀什区第二中学7年级数学下册第四章三角形专项训练试题_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆喀什区第二中学7年级数学下册第四章三角形专项训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,在△ABC和△BAD中,AC=BD,要使△ABC≌△BAD,则需要添加的条件是()A.∠BAD=∠ABC B.∠BAC=∠ABD C.∠DAC=∠CBD D.∠C=∠D2、一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为()A. B. C. D.3、如图,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列条件中的一个仍无法证明△ABC≌△DEF的是()A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE4、在下列长度的各组线段中,能组成三角形的是()A.2,4,7 B.1,4,9 C.3,4,5 D.5,6,125、如图,ABC的面积为18,AD平分∠BAC,且AD⊥BD于点D,则ADC的面积是()A.8 B.10 C.9 D.166、如图,为了估计一池塘岸边两点A,B之间的距离,小颖同学在池塘一侧选取了一点P,测得,那么点A与点B之间的距离不可能是()A. B. C. D.7、已知:如图,D、E分别在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,则∠BDC的度数是()A.95° B.90° C.85° D.80°8、如图,BD是△ABC的中线,AB=6,BC=4,△ABD和△BCD的周长差为()A.2 B.4 C.6 D.109、如图,点O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=8,OB=3,则OC的长为()A.3 B.4 C.5 D.610、如果一个三角形的两边长分别为5cm和8cm,则第三边长可能是()A.2cm B.3cm C.12cm D.13cm第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,正三角形△ABC和△CDE,A,C,E在同一直线上,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的结论有_____.(填序号)2、某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20米有一树C,继续前行20米到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米;则河的宽度为_____米.3、如图,△ABC三个内角的平分线交于点O,点D在AB的延长线上,AD=AC,BD=BO,若∠ACB=40°,则∠ABC的度数为_____.4、已知a,b,c是的三条边长,化简的结果为_______.5、如图,△ABC中,BD平分∠ABC,AD垂直于BD,△BCD的面积为58,△ADC的面积为30,则△ABD的面积等于______.6、如图,∠ABD=80°,∠C=38°,则∠D=___度.7、如图,AC平分∠DAB,要使△ABC≌△ADC,需要增加的一个条件是____.8、如图,,则的长为________.9、如图,点E,F分别为线段BC,DB上的动点,BE=DF.要使AE+AF最小值,若用作图方式确定E,F,则步骤是_____.10、如图,于点D,于点E,BD,CE交于点F,请你添加一个条件:______(只添加一个即可),使得≌三、解答题(6小题,每小题10分,共计60分)1、证明“全等三角形的对应角的平分线相等”.要求:将已有图形根据题意补充完整,并据此写出己知、求证和证明过程.2、一个零件形状如图所示,按规定应等于75°,和应分别是18°和22°,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.3、如图,已知点B,F,C,E在同一直线上,AB∥DE,BF=CE,AB=ED,求证:∠A=∠D.4、如图,,,求证:.5、如图,中,,点P在AB上,点Q在线段AC的延长线上,,PQ与BC相交于点D.点F在BC上,过点P作BC的垂线,垂足为E,.(1)求证:.(2)请猜测:线段BE、DE、CD数量关系为____________.6、如图,在和中,,,,.连接,交于点,连接.(Ⅰ)求证:;(Ⅱ)求的大小;(Ⅲ)求证:-参考答案-一、单选题1、B【分析】利用全等三角形的判定方法对各选项进行判断.【详解】解:∵AC=BD,而AB为公共边,A、当∠BAD=∠ABC时,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;B、当∠BAC=∠ABD时,根据“SAS”可判断△ABC≌△BAD,该选项符合题意;C、当∠DAC=∠CBD时,由三角形内角和定理可推出∠D=∠C,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;D、同理,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;故选:B.【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2、C【分析】先根据三角形的三边关系定理求得第三边的取值范围;再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:7-3<a<3+7,即4<a<10,∵a为整数,∴a的最大值为9,则三角形的最大周长为9+3+7=19.故选:C.【点睛】本题考查了三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.3、A【分析】根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可.【详解】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项符合题意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本选项不符合题意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本选项不符合题意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本选项不符合题意;故选:A.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.4、C【分析】根据三角形三边关系定理:三角形两边之和大于第三边,进行判定即可.【详解】解:A、∵,∴不能构成三角形;B、∵,∴不能构成三角形;C、∵,∴能构成三角形;D、∵,∴不能构成三角形.故选:C.【点睛】本题主要考查运用三角形三边关系判定三条线段能否构成三角形的情况,理解构成三角形的三边关系是解题关键.5、C【分析】延长BD交AC于点E,根据角平分线及垂直的性质可得:,,依据全等三角形的判定定理及性质可得:,,再根据三角形的面积公式可得:SΔABD=SΔADE,SΔBDC=S【详解】解:如图,延长BD交AC于点E,∵AD平分,,∴,,在和中,,∴,∴,∴SΔABD=S∴SΔADC故选:C.【点睛】题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键.6、D【分析】首先根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,求出AB的取值范围,然后再判断各选项是否正确.【详解】解:∵PA=100m,PB=90m,∴根据三角形的三边关系得到:,∴,∴点A与点B之间的距离不可能是20m,故选A.【点睛】本题主要考查了三角形的三边关系,掌握三角形两边只差小于第三边、两边之和大于第三边是解题的关键.7、C【分析】根据SAS证△ABE≌△ACD,推出∠C=∠B,求出∠C的度数,根据三角形的外角性质得出∠BDC=∠A+∠C,代入求出即可.【详解】解:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠C=∠B,∵∠B=25°,∴∠C=25°,∵∠A=60°,∴∠BDC=∠A+∠C=85°,故选C.【点睛】本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.8、A【分析】根据题意可得,,△ABD和△BCD的周长差为线段的差,即可求解.【详解】解:根据题意可得,△ABD的周长为,△BCD的周长为△ABD和△BCD的周长差为故选:A【点睛】本题考查了三角形中线的性质及三角形周长的计算,熟练掌握三角形中线的性质是解答本题的关键.9、C【分析】证明△AOB≌△COD推出OB=OD,OA=OC,即可解决问题.【详解】解:∵∠AOC=∠BOD,∴∠AOC+∠COB=∠BOD+∠COB,即∠AOB=∠COD,∵∠A=∠C,CD=AB,∴△AOB≌△COD(AAS),∴OA=OC,OB=OD,∵AD=8,OB=3,∴OC=AO=AD-OD=AD-OB=5.故选C.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题.10、C【分析】根据两边之和大于第三边,两边之差小于第三边可求得结果【详解】解:设第三边长为c,由题可知,即,所以第三边可能的结果为12cm故选C【点睛】本题主要考查了三角形的性质中三角形的三边关系知识点二、填空题1、①②③⑤【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正确;②根据③△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.【详解】解:①∵等边△ABC和等边△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正确;③∵△ACD≌△BCE(已证),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已证),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正确;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等边三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正确;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠QE,∴DP≠DE;故④错误;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正确;综上所述,正确的结论有:①②③⑤.故答案为:①②③⑤.【点睛】本题综合考查等边三角形判定与性质、全等三角形的判定与性质、平行线的判定与性质等知识点的运用.要求学生具备运用这些定理进行推理的能力.2、5【分析】将题目中的实际问题转化为数学问题,利用全等三角形的判定方法证得两个三角形全等即可得出答案.【详解】解:由题意知,在和中,,,∴,即河的宽度是5米,故答案为:5.【点睛】题目主要考查全等三角形的应用,熟练应用全等三角形的判定定理和性质是解题关键.3、度【分析】连接,,利用证明,则,根据角平分线的定义得到,再利用三角形外角性质得出,最后根据角平分线的定义即可得解.【详解】解:连接,,平分,,在和中,,,,平分,,,,,,,平分,,故答案为:.【点睛】本题考查了全等三角形的判定与性质,角平分线,解题的关键是利用证明.4、2b【分析】由题意根据三角形三边关系得到a+b-c>0,b-a-c<0,再去绝对值,合并同类项即可求解.【详解】解:∵a,b,c是的三条边长,∴a+b-c>0,a-b-c<0,∴|a+b-c|+|a-b-c|=a+b-c-a+b+c=2b.故答案为:2b.【点睛】本题考查的是三角形的三边关系以及去绝对值和整式加减运算,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.5、28【分析】延长交于,由证明,得出,得出,进而得出,即可得出结果.【详解】如图所示,延长交于,∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案为:28.【点睛】此题考查全等三角形的判定与性质,三角形面积的计算,证明三角形全等得出是解题关键.6、【分析】由三角形的外角的性质可得代入数据即可得到答案.【详解】解:故答案为:【点睛】本题考查的是三角形的外角的性质,掌握“三角形的外角等于与它不相邻的两个内角之和”是解本题的关键.7、AB=AD(答案不唯一)【分析】根据SAS即可证明△ABC≌△ADC.【详解】添加AB=AD,∵AC平分∠DAB,∴∠BAC=∠DAC又AC=AC∴△ABC≌△ADC(SAS)故答案为:AB=AD(答案不唯一).【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.8、3【分析】根据,可得到,再由,可得,从而得到,即可求解.【详解】解:∵,∴,∵,∴,即,∴,∴.故答案为:3【点睛】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.9、①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点【分析】按照①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点的步骤作图即可得.【详解】解:步骤是①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点;如图,点即为所求.故答案为:①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点.【点睛】本题考查了作一个角等于已知角、两点之间线段最短、作线段、全等三角形的判定与性质等知识点,熟练掌握尺规作图的方法是解题关键.10、(答案不唯一)【分析】由题意依据全等三角形的判定条件进行分析即可得出答案.【详解】解:∵于点D,于点E,∴,∵,∴当时,≌(AAS).故答案为:.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.三、解答题1、见解析.【分析】根据图形和命题写出已知求证,根据全等三角形的性质得出∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,根据角平分线的定义得出∠BAD=∠B′A′D′,根据全等三角形的判定得出△BAD≌△B′A′D′,再根据全等三角形的性质得出答案即可.【详解】解:如图,已知:△ABC≌△A′B′C′,AD、A′D′分别是∠BAC和∠B′A′C′的角平分线,求证:AD=A′D′,证明:∵△ABC≌△A′B′C′,∴∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,∵AD、A′D′分别是∠BAC和∠B′A′C′的角平分线,∴∠BAD=∠BAC,∠B′A′D′=∠B′A′C′,∴∠BAD=∠B′A′D′,在△BAD和△B′A′D中,,∴△BAD≌△B′A′D′(ASA),∴AD=A′D′.【点睛】本题考查了全等三角形的判定定理和性质定理,能求出△BAD≌△B′A′D′是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAAS,SSS,两直角三角形全等还有HL,全等三角形的对应边相等.2、不合格,理由见解析【分析】延长BD与AC相交于点E.利用三角形的外角性质,可得,,即可求解.【详解】解:如图,延长BD与AC相交于点E.∵是的一个外角,,,∴,同理可得∵李师傅量得,不是115°,∴这个零件不合格.【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.3、见解析【分析】根据平行线的性质得出∠B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论