难点解析-冀教版8年级下册期末测试卷附答案详解【考试直接用】_第1页
难点解析-冀教版8年级下册期末测试卷附答案详解【考试直接用】_第2页
难点解析-冀教版8年级下册期末测试卷附答案详解【考试直接用】_第3页
难点解析-冀教版8年级下册期末测试卷附答案详解【考试直接用】_第4页
难点解析-冀教版8年级下册期末测试卷附答案详解【考试直接用】_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冀教版8年级下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图是一所学校对学生上学方式进行调查后,根据调查结果绘制了一个不完整的统计图,其中“其他”部分所对的圆心角度数是36°则步行部分所占的百分比是()A.36% B.40% C.45% D.50%2、如图,菱形的对角线、相交于点,,,为过点的一条直线,则图中阴影部分的面积为()A.4 B.6 C.8 D.123、一辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条笔直的公路分别从甲、乙两地同时出发,匀速行驶.两车离乙地的距离(单位:)和两车行驶时间(单位:)之间的关系如图所示.下列说法错误的是().A.两车出发时相遇 B.甲、乙两地之间的距离是C.货车的速度是 D.时,两车之间的距离是4、如图,已知长方形,,分别是,上的点,,分别是,的中点,当点在上从点向点移动,而点不动时,那么下列结论成立的是()A.线段的长逐渐增大 B.线段的长逐渐减少C.线段的长不变 D.线段的长先增大后变小5、下列调查中,最适合采用普查方式的是()A.调查某品牌电视的使用寿命 B.调查毕节市元旦当天进出主城区的车流量C.调查我校七(1)班新冠核酸检查结果 D.调查某批次烟花爆竹的燃放效果6、在平面直角坐标系中,点P(-3,-3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7、为了解某市七年级学生的一分钟跳绳成绩,从该市七年级学生中随机抽取100名学生进行调查,以下说法正确的是()A.这100名七年级学生是总体的一个样本 B.该市七年级学生是总体C.该市每位七年级学生的一分钟跳绳成绩是个体 D.100名学生是样本容量第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,∠EAD和∠DCF是四边形ABCD的外角,∠EAD的平分线AG和∠DCF的平分线CG相交于点G.若∠B=m°,∠D=n°,则∠G=______°.(用含m、n的代数式表示)2、如图,正比例函数y=kx(k≠0)的图像经过点A(2,4),AB⊥x轴于点B,将△ABO绕点A逆时针旋转90°得到△ADC,则直线AC的函数表达式为_____.3、已知点A关于x轴的对称点B的坐标为(1,﹣2),则点A的坐标为_____.4、如图,A、B、C均为一个正十边形的顶点,则∠ACB=_____°.5、如图,一次函数y=2x和y=ax+5的图象交于点A(m,3),则不等式ax+5<2x的解集是_____.6、如图,在矩形ABCD中,AB=6,BC=8.如果𝐸、F分别是AD、BC上的点,且EF经过AC中点O,G,H是对角线AC上的点.下列判断正确的有______.①在AC上存在无数组G、H,使得四边形EGFH是平行四边形;②在AC上存在无数组G、H,使得四边形EGFH是矩形;③在AC上存在无数组G、H,使得四边形EGFH是菱形;④当AG=时,存在E、F、G,H,使得四边形EGFH是正方形.7、已知一次函数的图象(如图),则不等式<0的解集是___________8、中国象棋是一个有悠久历史的游戏.如图的棋盘上,可以把每个棋子看作是恰好在某个正方形顶点上的一个点,若棋子“帅”对应的数对,棋子“象”对应的数对,则图中棋盘上“卒”对应的数对是_______三、解答题(7小题,每小题10分,共计70分)1、已知在与中,,点在同一直线上,射线分别平分.(1)如图1,试说明的理由;(2)如图2,当交于点G时,设,求与的数量关系,并说明理由;(3)当时,求的度数.2、在平面直角坐标系中,点,点,点.以点O为中心,逆时针旋转,得到,点的对应点分别为.记旋转角为.(1)如图①,当点C落在上时,求点D的坐标;(2)如图②,当时,求点C的坐标;(3)在(2)的条件下,求点D的坐标(直接写出结果即可).3、如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,请在网格中画出△A1B1C1,并写出△A1B1C1三顶点坐标:A1,B1,C1;(2)计算△ABC的面积;(3)若点P为x轴上一点,当PA+PB最小时,写出此时P点坐标.4、肥西县祥源花世界管理委员会要添置办公桌椅A,B两种型号,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)直接写出A型桌椅每套元,B型桌椅每套元;(2)若管理委员会需购买两种型号桌椅共20套,若需要A型桌椅不少于12套,B型桌椅不少于6套,平均每套桌椅需要运费10元.设购买A型桌椅x套,总费用为y元.①求y与x之间的函数关系,并直接写出x的取值范围;②求出总费用最少的购置方案.5、平面直角坐标系内有一平行四边形点,,,,有一次函数的图象过点(1)若此一次函数图象经过平行四边形边的中点,求的值(2)若此一次函数图象与平行四边形始终有两个交点,求出的取值范围6、如图,在平面直角坐标系中,,,直线与x轴交于点C,与直线AB交于点D.(1)求直线AB的解析式及点D的坐标;(2)如图2,H是直线AB上位于第一象限内的一点,连接HC,当时,点M、N为y轴上两动点,点M在点N的上方,且,连接HM、NC,求的最小值;(3)将绕平面内某点E旋转90°,旋转后的三角形记为,若点落在直线AB上,点落在直线CD上,请直接写出满足条件的点的坐标以及对应的点E的坐标.7、已知:如图,在▱ABCD中,AE⊥BC,,点E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.-参考答案-一、单选题1、B【解析】【分析】先根据“其他”部分所对应的圆心角是36°,算出“其他”所占的百分比,再计算“步行”部分所占百分比即可.【详解】解:∵其他部分对应的百分比为:×100%=10%,∴步行部分所占百分比为1﹣(35%+15%+10%)=40%,故选:B.【点睛】本题考查扇形统计图,熟知“扇形统计图中各部分所占百分比的计算方法和各部分所占百分比间的关系”是解答本题的关键.2、B【解析】【分析】根据菱形的性质可证出,可将阴影部分面积转化为的面积,根据菱形的面积公式计算即可.【详解】解:四边形为菱形,,,,,,∴,∴,∴故选:.【点睛】此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为的面积为解题关键.3、D【解析】【分析】根据函数图象分析,当时,函数图象有交点,即可判断A选项;根据最大距离为360即可判断B选项,根据A选项可得两车的速度进而判断C,根据时间乘以速度求得两车的路程,进而求得两车的距离即可判断D选项.【详解】解:根据函数图象可知,当时,,总路程为360km,所以,轿车的速度为,货车的速度为:故A,B,C正确时,轿车的路程为,货车的路程为,则两车的距离为故D选项不正确故选D【点睛】本题考查了一次函数的应用,从图象上获取信息是解题的关键.4、C【解析】【分析】因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.【详解】解:连接.、分别是、的中点,为的中位线,,为定值.线段的长不改变.故选:.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.5、C【解析】【分析】根据抽样调查与普查的适用范围进行判断即可.【详解】解:A、D中为出售的产品,适合抽样调查;不符合要求;B中元旦的车流量较大,适合抽样调查;不符合要求;C中新冠核酸检查关乎每个人的身心健康,适合普查,符合要求;故选C.【点睛】本题考查了抽样调查与普查.解题的关键在于区分二者的适用范围.6、C【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征解答即可.【详解】解:因为A(−3,-3)中的横坐标为负,纵坐标为负,故点P在第三象限.故选C.【点睛】本题主要考查点所在的象限问题,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).7、C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A.这100名七年级学生的一分钟跳绳成绩是总体的一个样本,故该选项不符合题意;B、该市七年级学生的一分钟跳绳成绩是总体,故该选项不符合题意;C、该市每位七年级学生的一分钟跳绳成绩是个体,故该选项符合题意;D、样本容量是100,故该选项不符合题意;故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.二、填空题1、【解析】【分析】根据四边形的内角和定理可得,从而得到∠DAE+∠DCF=m°+n°,再由∠EAD的平分线AG和∠DCF的平分线CG相交于点G.可得,进而得到∠BAG+∠BCG=360°−12m°−12【详解】解:∵∠B=m°,∠D=n°,∴,∵∠EAD和∠DCF是四边形ABCD的外角,∴,∵∠EAD的平分线AG和∠DCF的平分线CG相交于点G.∴,∴,∵∠G+∠BAG+∠B+∠BCG=360°,∴∠G=360°−∠B+∠BAG+BCG故答案为:【点睛】本题主要考查了多边形的内角和定理,角平分线的应用,补角的应用,熟练掌握多边形的内角和定理是解题的关键.2、y=-0.5x+5【解析】【分析】直接把点A(2,4)代入正比例函数y=kx,求出k的值即可;由A(2,4),AB⊥x轴于点B,可得出OB,AB的长,再由△ABO绕点A逆时针旋转90°得到△ADC,由旋转不变性的性质可知DC=OB,AD=AB,故可得出C点坐标,再把C点和A点坐标代入y=ax+b,解出解析式即可.【详解】解:∵正比例函数y=kx(k≠0)经过点A(2,4)∴4=2k,解得:k=2,∴y=2x;∵A(2,4),AB⊥x轴于点B,∴OB=2,AB=4,∵△ABO绕点A逆时针旋转90°得到△ADC,∴DC=OB=2,AD=AB=4∴C(6,2)设直线AC的解析式为y=ax+b,把(2,4)(6,2)代入解析式可得:,解得:,所以解析式为:y=-0.5x+5【点睛】本题考查的是一次函数图象上点的坐标特点及图形旋转的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3、【解析】【分析】根据“关于x轴对称的两个点,横坐标相等,纵坐标互为相反数”,求解即可【详解】解:∵点A关于x轴的对称点B的坐标为(1,﹣2),∴点A的坐标为故答案为:【点睛】本题考查了关于x轴对称的点的坐标特征,掌握“关于x轴对称的两个点,横坐标相等,纵坐标互为相反数”是解题的关键.4、【解析】【分析】根据正多边形外角和和内角和的性质,得、;根据四边形内角和的性质,计算得;根据五边形内角和的性质,计算得,再根据三角形外角的性质计算,即可得到答案.【详解】如图,延长BA∵正十边形∴,正十边形内角,即根据题意,得四边形内角和为:,且∴∴根据题意,得五边形内角和为:,且∴∴故答案为:.【点睛】本题考查了正多边形、三角形外角的知识;解题的关键是熟练掌握正多边形外角和、正多边形内角和的性质,从而完成求解.5、##【解析】【分析】把点A(m,3)代入y=2x求解的值,再利用的图象在的图象的上方可得答案.【详解】解:一次函数y=2x和y=ax+5的图象交于点A(m,3),不等式ax+5<2x的解集是故答案为:【点睛】本题考查的是根据一次函数的交点坐标确定不等式的解集,理解一次函数的图象的性质是解本题的关键.6、①②④7、x<1【解析】【分析】根据一次函数与一元一次不等式的关系即可求出答案.【详解】解:∵y=kx+b,kx+b<0,∴y<0,由图象可知:x<1,故答案为:x<1.【点睛】本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.8、【解析】【分析】“帅”对应的数对(1,0),“象”对应的数对(3,−2),可建立平面直角坐标系;如图,以“马”为原点,连接“马”、“帅”为x轴,垂直于x轴并过“马”为y轴;进而确定“卒”对应的数对.【详解】解:由题意中的“帅”与“象”对应的数对,建立如图的直角坐标系∴可知“卒”对应的数对为;故答案为:.【点睛】本题考查了有序数对与平面直角坐标系中点的位置.解题的关键在建立正确的平面直角坐标系.三、解答题1、(1)理由见解析(2),理由见解析(3)【解析】【分析】(1),,可知,进而可说明;(2)如图1所示,连接并延长至点K,分别平分,则设,为的外角,,同理,,得;又由(1)中证明可知,,进而可得到结果;(3)如图2所示,过点C作,则,,可得,由(1)中证明可得,在中,,即,进而可得到结果.(1)证明:又在和中.(2)解:.理由如下:如图1所示,连接并延长至点K分别平分则设为的外角同理可得即.又由(1)中证明可知由三角形内角和公式可得即.(3)解:当时,如图2所示,过点C作,则,即由(1)中证明可得在中,根据三角形内角和定理有即即即,解得:故.【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接并延长,利用三角形外角性质证得是解题的关键.2、(1)(2)(3)【解析】【分析】(1)如图,过点D作DE⊥OA于点E.解直角三角形求出OE,DE,可得结论;(2)如图②,过点C作CT⊥OA于点T,解直角三角形求出OT,CT可得结论;(3)如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.利用勾股定理构建方程求出m,可得结论.(1)如图,过点作,垂足为.∵,,∴,,.∵,∴.在中,由,得.解得.∴,.∵是由旋转得到的,∴,.∴.∴.∴.在中,.∴点的坐标为.(2)如图,过点作,垂足为.由已知,得.∴.∴.∵是由旋转得到的,∴.在中,由,得.∴点的坐标为.(3)如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.∵∠DOC=30°,∠COT=45°,∴∠DOJ=75°,∴∠ODJ=90°-75°=15°,∵KD=KO,∴∠KDO=∠KOD=15°,∴∠OKJ=∠KDO+∠KOD=30°,∴OK=DK=2m,KJ=m,∵OD2=OJ2+DJ2,∴22=m2+(2m+m)2,解得m=(负根已经舍弃),∴OJ=,DJ=,∴D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.3、(1)(2)3.5(3)【解析】【分析】(1)依据轴对称的性质进行作图,即可得到△A1B1C1,进而得出△A1B1C1三顶点坐标;(2)依据割补法进行计算,即可得到△ABC的面积;(3)作点A关于x轴的对称点,连接B,交x轴于点P,依据一次函数的图象可得点P的坐标.(1)如图,△A1B1C1即为所求;其中A1,B1,C1的坐标分别为:故答案为:(2)△ABC的面积为:3×3-×3×1-×1×2-×2×3=3.5.(3)如图,作点A关于x轴的对称点,连接B,则B与x轴的交点即是点P的位置.设B的解析式为y=kx+b(k≠0),把和B(4,2)代入可得:−1=k+b2=4k+b,解得,∴y=x-2,令y=0,则x=2,∴P点坐标为,故答案为:.【点睛】本题考查了作图-轴对称变换、轴对称-最短路线问题,解决本题的关键是掌握轴对称的性质.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.4、(1)A型桌椅每套600元,B型桌椅每套800元;(2)购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元【解析】【分析】(1)设A型桌椅每套a元,B型桌椅每套b元,根据题意列二元一次方程组并解方程即可;(2)①根据总费用=A型桌椅的费用+B型桌椅的费用建立y与x之间的函数关系式子,再由A型桌椅不少于12套,B型桌椅不少于6套列出一元一次不等式组求解即可得出x的取值范围;②根据一次函数的性质求解即可.(1)解:设A型桌椅每套a元,B型桌椅每套b元,根据题意,得:,解得:,所以A型桌椅每套600元,B型桌椅每套800元;(2)解:①据题意,总费用y=600x+800(20-x)+20×10=-200x+16200,∵A型桌椅不少于12套,B型桌椅不少于6套,∴,解得:12≤x≤14,所以y与x之间的函数关系为y=-200x+16200(12≤x≤14,x为整数);②由①知y=-200x+16200,且-200<0,∴y随x的增大而减小,∴当x=14时,总费用y最少,最少费用为-200×14+16200=13400元,即购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元.【点睛】本题考查二元一次方程的应用、一次函数的应用、一元一次不等式组的应用,理解题意,正确列出方程或函数关系式是解答的关键.5、(1)k=;(2)−1<k<,且k≠0.【解析】【分析】(1)设OA的中点为M,根据M、P两点的坐标,运用待定系数法求得k的值;(2)当一次函数y=kx+b的图象过B、P两点时,求得k的值;当一次函数y=kx+b的图象过A、P两点时,求得k的值,最后判断k的取值范围.(1)解:设OA的中点为M,∵O(0,0),A(4,0),∴OA=4,∴OM=2,∴M(2,0),∵一次函数y=kx+b的图象过M(2,0),P(6,1)两点,∴,解得:k=;(2)如图,由一次函数y=kx+b的图象过定点P,作直线BP,AP与平行四边形只有一个交点,由于直线与平行四边形有两个交点,所以直线应在直线BP,AP之间,当一次函数y=kx+b的图象过B、P两点时,代入表达式y=kx+b得到:,解得:k=-1,当一次函数y=kx+b的图象过A、P两点时,代入表达式y=kx+b得到:,解得:k=,所以−1<k<,由于要满足一次函数的存在性,所以−1<k<,且k≠0.【点睛】本题考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.6、(1)直线AB解析式为y=3x+3;D点坐标为:;(2)(3),【解析】【分析】(1)设直线AB解析式为y=kx+b,代入点A和点B坐标即可求出;将直线AB和直线CD解析式联立方程组,即可求出点D坐标;(2)设H点坐标为(m,3m+3),由求出H点坐标,再作点H关于y周对称点H’,将H’往下平移1个单位到H’’,连接CH’’,此时最小,最小值为CH’’+MN,由此即可求解;(3)画出图象,证明△AEO≌△A’EO’(SAS),得到∠O’HO=∠OEO’=90°,进一步得到直线O’A’⊥x轴,得到O’、A’横坐标相等,纵坐标差等于1,由此即可求解.(1)解:设直线AB解析式为y=kx+b,代入点,,得到:,解得:,∴直线AB解析式为y=3x+3,将直线AB和直线CD联立方程组得到:,解得:,故D点坐标为:.(2)解:令中y=0,得到x=3,所以C(3,0),∴AC=3+1=4,设H点坐标为(m,3m+3),由于H是第一象限内的点,所以3m+3>

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论