2023年山东省蓬莱市中考数学达标测试及完整答案详解(名校卷)_第1页
2023年山东省蓬莱市中考数学达标测试及完整答案详解(名校卷)_第2页
2023年山东省蓬莱市中考数学达标测试及完整答案详解(名校卷)_第3页
2023年山东省蓬莱市中考数学达标测试及完整答案详解(名校卷)_第4页
2023年山东省蓬莱市中考数学达标测试及完整答案详解(名校卷)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省蓬莱市中考数学达标测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、5个红球、4个白球放入一个不透明的盒子里,从中摸出6个球,恰好红球与白球都摸到,这个事件()A.不可能发生 B.可能发生 C.很可能发生 D.必然发生2、如图,正方形边长为4,、、、分别是、、、上的点,且.设、两点间的距离为,四边形的面积为,则与的函数图象可能是(

)A. B. C. D.3、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是()A. B.四边形EFGH是菱形C. D.4、下列关于随机事件的概率描述正确的是()A.抛掷一枚质地均匀的硬币出现“正面朝上”的概率为0.5,所以抛掷1000次就一定有500次“正面朝上”B.某种彩票的中奖率为5%,说明买100张彩票有5张会中奖C.随机事件发生的概率大于或等于0,小于或等于1D.在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率5、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是()A..等腰三角形 B.等边三角形C..直角三角形 D..等腰直角三角形二、多选题(5小题,每小题3分,共计15分)1、一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新的两位数与原来的两位数的乘积是736,原来的两位数是(

)A.23 B.32 C. D.2、对于二次函数y=﹣2(x﹣1)(x+3),下列说法不正确的是()A.图象的开口向上B.图象与y轴交点坐标是(0,6)C.当x>﹣1时,y随x的增大而增大D.图象的对称轴是直线x=13、下列四个命题中正确的是(

)A.与圆有公共点的直线是该圆的切线B.垂直于圆的半径的直线是该圆的切线C.到圆心的距离等于半径的直线是该圆的切线D.过圆直径的端点,垂直于此直径的直线是该圆的切线4、如图,AB为⊙O直径,弦CD⊥AB于E,则下面结论中正确的是(

)A.CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.OE=BE5、已知直角三角形的两条边长恰好是方程的两个根,则此直角三角形斜边长是(

)A. B. C.3 D.5第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是_____.2、如图,正方形ABCD的边长为6,点E在边CD上.以点A为中心,把△ADE顺时针旋转90°至△ABF的位置.若DE=2,则FE=___.3、关于的方程,k=_____时,方程有实数根.4、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分的面积为_____.5、如图,在中,,分别以、、边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当,时,则阴影部分的面积为__________.四、简答题(2小题,每小题10分,共计20分)1、根据下列条件,求二次函数的解析式.(1)图象经过(0,1),(1,﹣2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);2、已知,且,求x,y的值.五、解答题(4小题,每小题10分,共计40分)1、如图,AB是⊙O的直径,点D,E在⊙O上,四边形BDEO是平行四边形,过点D作交AE的延长线于点C.(1)求证:CD是⊙O的切线.(2)若,求阴影部分的面积.2、如图,ABC是⊙O的内接三角形,,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AD=6,求线段AE的长.3、作图题(1)由大小相同的小立方块搭成的几何体如下图,请在右图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.4、用适当的方法解下列方程:(1)

(2)-参考答案-一、单选题1、D【解析】【分析】根据事件的可能性判断相应类型即可.【详解】5个红球、4个白球放入一个不透明的盒子里,由于红球和白球的个数都小于6,从中摸出6个球,恰好红球与白球都摸到,是必然事件.故选:D.【考点】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待.一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间.2、A【解析】【分析】本题考查了动点的函数图象,先判定图中的四个小直角三角形全等,再用大正方形的面积减去四个直角三角形的面积,得函数y的表达式,结合选项的图象可得答案.【详解】解:∵正方形ABCD边长为4,AE=BF=CG=DH∴AH=BE=CF=DG,∠A=∠B=∠C=∠D∴△AEH≌△BFE≌△CGF≌△DHG∴y=4×4-x(4-x)×4=16-8x+2x2=2(x-2)2+8∴y是x的二次函数,函数的顶点坐标为(2,8),开口向上,从4个选项来看,开口向上的只有A和B,C和D图象开口向下,不符合题意;但是B的顶点在x轴上,故B不符合题意,只有A符合题意.故选:A.【考点】本题考查了动点问题的函数图象,正确地写出函数解析式并数形结合分析是解题的关键.3、C【分析】由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.【详解】解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切线,点G、H分别是切点,∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正确,不符合题意;延长EF与AB交于点N,如图:∵OF⊥EF,OF是⊙O的半径,∴EF是⊙O的切线,∴HE=EF,NF=NG,∴△ANE是等边三角形,∴FG//HE,FG=HE,∠AEF=60°,∴四边形EFGH是平行四边形,∠FEC=60°,又∵HE=EF,∴四边形EFGH是菱形,故B正确,不符合题意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正确,不符合题意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD=DE,∴AD=2CE,故C错误,符合题意.故选C.【点睛】本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.4、D【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【详解】解:概率反映的是随机性的规律,但每次试验出现的结果具有不确定,故选项A、B错误;随机事件发生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故选项C错误;在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率,故选项D正确;故选:D.【点睛】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、D【分析】根据旋转的性质推出相等的边CE=CF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.【详解】解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故选:D.【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.二、多选题1、AB【解析】【分析】设原来的两位数十位上的数字为,则个位上的数字为,根据所得到的新两位数与原来的两位数的乘积为736,可列出方程求解即可.【详解】解:设原来的两位数十位上的数字为,则个位上的数字为,依题意可得:,解得:,,当时,,符合题意,原来的两位数是23,当时,,符合题意,原来的两位数是32,∴原来的两位数是23或32,故选AB.【考点】本题考查了一元二次方程的应用,解题的关键是能正确用每一数位上的数字表示这个两位数.2、ACD【解析】【分析】将函数解析式变成顶点式,依照二次函数的性质对比四个选项即可得出结论.【详解】解:A、y=-2(x-1)(x+3),∵a=-2<0,∴图象的开口向下,故本选项错误,符合题意;B、y=-2(x-1)(x+3)=-2x2-4x+6,当x=0时,y=6,即图象与y轴的交点坐标是(0,6),故本选项正确,不符合题意;C、y=-2(x-1)(x+3)=-2(x+1)2+8,即当x>-1,y随x的增大而减少,故本选项错误,符合题意;D、y=-2(x-1)(x+3)=-2(x+1)2+8,即图象的对称轴是直线x=-1,故本选项错误,符合题意.故选:ACD.【考点】本题考查了二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联系二次函数性质对比四个选项即可.3、CD【解析】【分析】要正确理解切线的定义:和圆有唯一公共点的直线是圆的切线.掌握切线的判定:①经过半径的外端,且垂直于这条半径的直线,是圆的切线;②到圆心的距离等于半径的直线是该圆的切线.【详解】解:A中,与圆有两个公共点的直线,是圆的割线,故该选项不符合题意;B中,应经过此半径的外端,故该选项不符合题意;C中,根据切线的判定方法,故该选项符合题意;D中,根据切线的判定方法,故该选项符合题意.故选:CD.【考点】本题考查了切线的判定.注意掌握切线的判定定理与切线的定义是解此题的关键.4、ABC【解析】【分析】根据垂径定理知,垂直于弦的直径平分弦,并且平分线所对的两条弧,即可判断A选项、B选项正确,由圆周角定理知,在同圆或等圆中,同弧所对的圆周角相等,可判断C选项正确,题目中并没有提到E是OB中点,所以不能证明OE=BE.【详解】A.AB为⊙O直径,弦CD⊥AB于E,由垂径定理得:CE=DE,A选项正确;B.由垂径定理得:,B选项正确;C.,由圆周角定理得:∠BAC=∠BAD,C选项正确;D.E不一定是OB中点,所以不能证明OE=BE,D错误.故选:ABC.【考点】本题考查垂径定理和圆周角定理,熟知垂直于弦的直径平分弦,并且平分线所对的两条弧是解题的关键.5、AC【解析】【分析】先解出一元二次方程,再根据勾股定理计算即可;【详解】,,∴或,当2、3是直角边时,斜边;∵,∴3可以是三角形斜边;故选AC.【考点】本题主要考查了一元二次方程的求解、勾股定理,准确计算是解题的关键.三、填空题1、60π【解析】【分析】利用圆锥的侧面积公式:,求出圆锥的母线即可解决问题.【详解】解:圆锥的母线,∴圆锥的侧面积=π×10×6=60π,故答案为:60π.【考点】本题考查了圆锥的侧面积,勾股定理等知识,解题的关键是记住圆锥的侧面积公式.2、【解析】【分析】由旋转的性质可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【详解】解:∵把△ADE顺时针旋转90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴点F,点B,点C共线,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根据勾股定理得:EF=,故答案为:.【考点】本题考查了旋转的性质,正方形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键.3、【解析】【分析】由于最高次项前面的系数不确定,所以进行分类讨论:①当时,直接进行求解;②当时,方程为一元二次方程,利用根的判别式,确定k的取值范围,最后综合①②即可求出满足题意的k的取值范围.【详解】解:①当时,方程化为:,解得:,符合题意;②当时,∵方程有实数根,∴,即,解得:,∴且;综上所述,当时,方程有实数根,故答案为:.【考点】题目主要考查方程的解的情况,包括一元一次方程及一元二次方程的求解,分情况讨论方程的解是解题关键.4、【分析】利用勾股定理求出AC及AB的长,根据阴影面积等于求出答案.【详解】解:由旋转得,,=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB=,,∴阴影部分的面积==,故答案为:..【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.5、【分析】根据阴影部分面积等于以为直径的2个半圆的面积加上减去为半径的半圆面积即.【详解】解:在中,,,.故答案为:【点睛】本题考查了勾股定理,求扇形面积,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.四、简答题1、(1)y=4x2﹣7x+1;(2)y=﹣2(x﹣2)2+3.【解析】【分析】(1)先设出抛物线的解析式为y=ax2+bx+c,再将点(0,1),(1,−2),(2,3)代入解析式中,即可求得抛物线的解析式;(2)由于已知抛物线的顶点坐标,则可设顶点式y=a(x−2)2+3,然后把(3,1)代入求出a的值即可.【详解】解:(1)设出抛物线的解析式为y=ax2+bx+c,将(0,1),(1,﹣2),(2,3)代入解析式,得:,解得:,∴抛物线解析式为:y=4x2﹣7x+1;(2)设抛物线解析式为y=a(x﹣2)2+3,把(3,1)代入得:a(3﹣2)2+3=1,解得a=﹣2,所以抛物线解析式为y=﹣2(x﹣2)2+3.【考点】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.2、x=6,y=10【解析】【分析】设,则x=3k,y=5k,z=6k,由可求得k的值,从而可求得x与y的值.【详解】设,则x=3k,y=5k,z=6k∵∴解得:k=2∴x=3×2=6,y=5×2=10即x、y的值分别为6、10【考点】本题考查了比例的性质,若几个比相等,即,常常设其比值为k,则有a=kb,c=kd,e=kf,再根据题目条件解答则更简便.五、解答题1、(1)见详解;(2)【分析】(1)连接OD,由题意易得,则有△ODB是等边三角形,然后可得△AEO也为等边三角形,进而可得OD∥AC,最后问题可求证;(2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圆O的半径,进而可得扇形OED和△OED的面积,则有弓形ED的面积,最后问题可求解.【详解】(1)证明:连接OD,如图所示:∵四边形BDEO是平行四边形,∴,∴△ODB是等边三角形,∴∠OBD=∠BOD=60°,∴∠AOE=∠OBD=60°,∵OE=OA,∴△AEO也为等边三角形,∴∠EAO=∠DOB=60°,∴AE∥OD,∴∠ODC+∠C=180°,∵CD⊥AE,∴∠C=90°,∴∠ODC=90°,∵OD是圆O的半径,∴CD是⊙O的切线.(2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,ED∥AB,∴∠EAO=∠CED=60°,∵∠AOE+∠EOD+∠BOD=180°,∴∠EOD=60°,∴△DEO为等边三角形,∴ED=OE=AE,∵CD⊥AE,∠CED=60°,∴∠CDE=30°,∴,∵,∴,∴,设△OED的高为h,∴,∴,∴.【点睛】本题主要考查扇形面积公式、切线的判定定理及解直角三角形,熟练掌握扇形面积公式、切线的判定定理及解直角三角形是解题的关键.2、(1)见解析;(2)6【分析】(1)连接OC,根据CE是⊙O的切线,可得∠OCE=,根据圆周角定理,可得∠AOC=,从而得到∠AOC+∠OCE=,即可求证;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论