




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常熟市中考数学真题分类(平行线的证明)汇编达标测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、下列定理中,没有逆定理的是(
)A.等腰三角形的两个底角相等 B.对顶角相等C.三边对应相等的两个三角形全等 D.直角三角形两个锐角的和等于90°2、下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容.则回答正确的是()已知:如图,∠BEC=∠B+∠C.求证:AB∥CD.证明:延长BE交※于点F,则∠BEC=180°﹣∠FEC=◎+∠C.又∠BEC=∠B+∠C,得∠B=▲.故AB∥CD(@相等,两直线平行).A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB3、如图,将一副直角三角板按如图所示叠放,其中,,,则的大小是(
)A. B. C. D.4、如图:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,则下列说法正确的有几个(
)(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;
(4)AE⊥DE.(5)DE=AEA.2个 B.3个 C.4个 D.55、如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66° B.104° C.114° D.124°6、如图所示,下列推理及括号中所注明的推理依据错误的是(
)A.,(内错角相等,两直线平行)B.,(两直线平行,同旁内角互补)C.,(两直线平行,同旁内角互补)D.,(同位角相等,两直线平行)7、如图,∠C=88°=∠D,AD与BE相交于点E,若∠DBC=23°,则∠CAE的度数是()A.23° B.25° C.27° D.无法确定8、如图,将沿翻折,三个顶点恰好落在点处.若,则的度数为(
)A. B.C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,在四边形中,,,,的延长线与、相邻的两个角的平分线交于点E,若,则的度数为___________.2、如图,将分别含有、角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为,则图中角的度数为_______.3、下列说法:(1)两点之间的所有连线中,线段最短;(2)相等的角是对顶角;(3)过一点有且仅有一条直线与已知直线平行;(4)长方体是四棱柱.其中正确的有______(填正确说法的序号).4、如图,把两块大小相同的含45°的三角板ACF和三角板CFB如图所示摆放,点D在边AC上,点E在边BC上,且∠CFE=13°,∠CFD=32°,则∠DEC的度数为_______.5、在△ABC中,将∠B、∠C按如图方式折叠,点B、C均落于边BC上一点G处,线段MN、EF为折痕.若∠A=80°,则∠MGE=_____°.6、如图,点D是△ABC两条角平分线AP、CE的交点,如果∠BAC+∠BCA=140°,那么∠ADC=_____°.7、如图,把一张直角△ABC纸片沿DE折叠,已知∠1=68°,则∠2的度数为_______.三、解答题(7小题,每小题10分,共计70分)1、已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.2、如图所示,AE为△ABC的角平分线,CD为△ABC的高,若∠B=30°,∠ACB为70°.(1)求∠CAF的度数;(2)求∠AFC的度数.3、如图,已知,垂足为点N,与交于点M.求证:.(用反证法证明)4、请阅读下列材料,并完成相应的任务:有趣的“飞镖图”如图,这种形似飞镖的四边形,可以形象地称它为“飞镖图”.当我们仔细观察后发现,它实际上就是凹四边形.那么它具有哪些性质呢?又将怎样应用呢?下面我们进行认识与探究:凹四边形通俗地说,就是一个角“凹”进去的四边形,其性质有:凹四边形中最大内角外面的角等于其余三个内角之和.(即如图1,∠ADB=∠A+∠B+∠C)理由如下:方法一:如图2,连接AB,则在△ABC中,∠C+∠CAB+∠CBA=180°,即∠1+∠2+∠3+∠4+∠C=180°,又∵在△ABD中,∠1+∠2+∠ADB=180°,∴∠ADB=∠3+∠4+∠C,即∠ADB=∠CAD+∠CBD+∠C.方法二:如图3,连接CD并延长至F,∵∠1和∠3分别是△ACD和△BCD的一个外角,......大家在探究的过程中,还发现有很多方法可以证明这一结论,你有自己的方法吗?任务:(1)填空:“方法一”主要依据的一个数学定理是;(2)探索:根据“方法二”中辅助线的添加方式,写出该证明过程的剩余部分;(3)应用:如图4,AE是∠CAD的平分线,BF是∠CBD的平分线,AE与BF交于G,若∠ADB=150°,∠AGB=110°,请你直接写出∠C的大小.5、如图,直线DE、FM,分别交的两边于N、G,P、Q,若吗?如果平行请说明理由.6、如图,在△ABC中,∠ABC的平分线BD交∠ACB的平分线CE于点O.(1)求证:.(2)如图1,若∠A=60°,请直接写出BE,CD,BC的数量关系.(3)如图2,∠A=90°,F是ED的中点,连接FO.①求证:BC−BE−CD=2OF.②延长FO交BC于点G,若OF=2,△DEO的面积为10,直接写出OG的长.7、指出下列命题的题设和结论,并判断它们是真命题还是假命题,如果是假命题,举出一个反例.(1)两个角的和等于平角时,这两个角互为补角;(2)内错角相等;(3)两条平行线被第三条直线所截,内错角相等.-参考答案-一、单选题1、B【解析】【详解】解:A、等腰三角形的两个底角相等的逆命题为:有两个角相等的三角形为等腰三角形,此逆命题为真命题,所以A选项有逆定理;B、对顶角相等的逆命题为:相等的角为对顶角,此命题为假命题,所以B选项没有逆定理;C、三边对应相等的两个三角形全等的逆命题为:全等的两个三角形的三边对应相等,此逆命题为真命题,所以C选项有逆定理;D、直角三角形的两锐角的和为90°的逆命题为:两锐角的和为90°的三角形为直角三角形,此逆命题为真命题,所以D选项有逆定理.故选B.2、C【解析】【分析】利用邻补角的概念、等量代换及平行线的判定求解可得.【详解】证明:延长交于点,则.又,得.故(内错角相等,两直线平行).所以※代表,◎代表,▲代表,代表内错角,故选:.【考点】本题主要考查平行线的判定,解题的关键是掌握邻补角的概念、等量代换及平行线的判定.3、C【解析】【分析】根据直角三角形的性质可得∠BAC=45°,根据邻补角互补可得∠EAF=135°,然后再利用三角形的外角的性质可得∠AFD=135°+30°=165°.即可.【详解】解:∵∠B=45°,∴∠BAC=45°,∴∠EAF=135°,∴∠AFD=135°+30°=165°,∴∠BFD=180°﹣∠AFD=15°故选:C.【考点】此题主要考查了三角形的内角和,三角形的外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.4、B【解析】【分析】过点E作EF⊥AD垂足为点F,证明△DEF≌△DEC(AAS);得出CE=EF,DC=DF,∠CED=∠FED,证明Rt△AFE≌Rt△ABE(HL);得出AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,即可得出答案.【详解】解:如图,过点E作EF⊥AD,垂足为点F,可得∠DFE=90°,则∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DCE和△DFE中,,∴△DEF≌△DEC(AAS);∴CE=EF,DC=DF,∠CED=∠FED,∵E是BC的中点,∴CE=EB,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△AFE≌Rt△ABE(HL);∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故结论(1)正确,则AD=AF+DF=AB+CD,故结论(3)正确;可得∠AED=∠FED+AEF=∠FEC+∠BEF=90°,即AE⊥DE故结论(4)正确.∵AB≠CD,AE≠DE,(5)错误,∴△EBA≌△DCE不可能成立,故结论(2)错误.综上所知正确的结论有3个.故答案为:B.【考点】本题考查全等三角形的判定与性质、平行线的判定等内容,作出辅助线是解题的关键.5、C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°,故选C.【考点】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.6、C【解析】【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【详解】解:.,(内错角相等,两直线平行),正确;.,(两直线平行,同旁内角互补),正确;.,(两直线平行,同旁内角互补),故选项错误;.,(同位角相等,两直线平行),正确;故选:C.【考点】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.7、A【解析】【分析】利用三角形的内角和180°和对顶角相等求解即可.【详解】解:∵∠C+∠CEA+∠CAE=180°,∠D+∠DEB+∠DBC=180°,又∠C=∠D,∠CEA=∠DEB,∴∠CAE=∠DBE=23°.故选:A.【考点】本题考查三角形的内角和定理、对顶角相等,熟练掌握三角形的内角和是180°是解答的关键.8、D【解析】【分析】根据翻折变换前后对应角不变,故∠B=∠EOF,∠A=∠DOH,∠C=∠HOG,∠1+∠2+∠HOD+∠EOF+∠HOG=360°,进而求出∠1+∠2的度数.【详解】解:∵将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,∴∠B=∠EOF,∠A=∠DOH,∠C=∠HOG,∠1+∠2+∠HOD+∠EOF+∠HOG=360°,∵∠HOD+∠EOF+∠HOG=∠A+∠B+∠C=180°,∴∠1+∠2=360°-180°=180°,∵∠1=40°,∴∠2=140°,故选:D.【考点】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出∠HOD+∠EOF+∠HOG=∠A+∠B+∠C=180°是解题关键.二、填空题1、【解析】【分析】先证明Rt△CDA≌Rt△CBA得到,再由角平分线的定义求出∠EDC=45°,最后根据三角形内角和定理求解即可.【详解】解:∵,,∴∠CDA=∠CBA=90°,在Rt△CDA和Rt△CBA中,,∴Rt△CDA≌Rt△CBA(HL),∴,∵DE平分与∠ADC相邻的角,∠ADC=90°,∴∠EDC=45°,∴∠CED=180°-∠DAE-∠ADC-∠EDC=15°,故答案为:15°.【考点】本题主要考查了全等三角形的性质与判定,三角形内角和定理,角平分线的定义,熟知全等三角形的性质与判定条件是解题的关键.2、##140度【解析】【分析】如图,首先标注字母,利用三角形的内角和求解,再利用对顶角的相等,三角形的外角的性质可得答案.【详解】解:如图,标注字母,由题意得:故答案为:【考点】本题考查的是三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.3、(1)、(4).【解析】【分析】根据所学公理和性质解答即可.【详解】解:(1)两点之间的所有连线中,线段最短,故本说法正确;(2)相等的角不一定是对顶角,但对顶角相等,故本说法错误;(3)应为过直线外一点有且仅有一条直线与已知直线平行,故本说法错误;(4)长方体是四棱柱,正确.故答案为(1)、(4).【考点】本题是对数学语言的严谨性的考查,记忆数学公理、性质概念等一定要做的严谨.4、【解析】【分析】作FH垂直于FE,交AC于点H,可证得,由对应边、对应角相等可得出,进而可求出,则.【详解】作FH垂直于FE,交AC于点H,∵又∵,∴∵,FA=CF∴∴FH=FE∵∵∴又∵DF=DF∴∴∵∴∵∴∴故答案为:.【考点】本题考查了等腰三角形的性质,全等三角形的判定及其性质,作辅助线HF垂直于FE是解题的关键.5、80【解析】【分析】由折叠的性质可知:∠B=∠MGB,∠C=∠EGC,根据三角形的内角和为180°,可求出∠B+∠C的度数,进而得到∠MGB+∠EGC的度数,问题得解.【详解】解:∵线段MN、EF为折痕,∴∠B=∠MGB,∠C=∠EGC,∵∠A=80°,∴∠B+∠C=180°﹣80°=100°,∴∠MGB+∠EGC=∠B+∠C=100°,∴∠MGE=180°﹣100°=80°,故答案为:80.【考点】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,解题的关键是利用整体思想得到∠MGB+∠EGC的度数.6、110【解析】【分析】根据CE,AP分别平分∠ACB和∠BAC,得∠CAP=∠BAC,∠ACE=∠BCA,再根据三角形内角和定理,求出∠ADC即可.【详解】解:∵CE,AP分别平分∠ACB和∠BAC,∴∠ACE=∠BCA,∠CAP=∠BAC,∵∠BAC+∠BCA=140°,∴∠CAP+∠ACE=70°,∴∠ADC=180°﹣(∠CAP+∠ACE)=180°﹣70°=110°,故答案为:110.【考点】本题考查了角平分线的性质和三角形内角和定理,熟练掌握了角平分线的性质是解题的关键.7、46°【解析】【分析】由题意得∠C′=90°,由折叠得∠CDE=∠C′DE,那么∠CDE=180°﹣∠1=112°,故∠C′DE=∠C′DA+∠1=112°,进而推断出∠C′DA=112°﹣68°=44°,从而求得∠2.【详解】解:由题意得:∠C′=90°,由折叠得∠CDE=∠C′DE.∵∠1=68°,∴∠CDE=180°﹣∠1=112°.∴∠C′DE=∠C′DA+∠1=112°.∴∠C′DA=112°﹣68°=44°.∴∠2=180°﹣∠C′﹣∠C′DA=46°.故答案为:46°.【考点】本题考查了三角形折叠问题和三角形内角和,解题关键是根据折叠得出角相等,利用三角形内角和求解.三、解答题1、证明见解析【解析】【分析】过点A作EFBC,利用EFBC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【详解】解:如图,过点A作EFBC,∵EFBC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.【考点】本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键.2、(1)40°;(2)130°【解析】【分析】(1)依据三角形内角和定理,即可得到∠BAC的度数,再根据角平分线的定义,即可得到∠CAF的度数;(2)依据三角形内角和定理,即可得到∠ACF的度数,再根据三角形内角和定理,即可得出∠AFC的度数.【详解】解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣30°﹣70°=80°,又∵AE平分∠BAC,∴∠CAF=∠CAB=×80°=40°;(2)∵CD为△ABC的高,∠CAD=80°,∴Rt△ACD中,∠ACF=90°﹣80°=10°,∴∠AFC=180°﹣∠ACF﹣∠CAF=180°﹣10°﹣40°=130°.【考点】本题考查了三角形的外角性质、三角形的角平分线、中线和高、三角形内角和定理,熟练掌握性质,灵活运用定理是解题的关键.3、见解析.【解析】【分析】假设与不垂直,则,而,,则,这与相矛盾,由此即可证明.【详解】证明:假设与不垂直,则,∵,∴,∴,这与相矛盾,∴.【考点】本题主要考查了反证法和平行线的性质,垂线的性质,解题的关键在于能够熟练掌握相关知识进行求解.4、(1)三角形内角和定理(或三角形的内角和等于180°);(2)见解析;(3)70°【解析】【分析】(1)根据三角形内角和定理,即可求解;(2)根据三角形外角的性质可得∠1=∠2+∠A,∠3=∠4+∠B,从而得到∠1+∠3=∠2+∠A+∠4+∠B,即可求证;(3)由(2)可得:∠ADB=∠CAD+∠CBD+∠C,∠AGB=∠CAE+∠CBF+∠C,从而得到∠CAE+∠CBF=110°-∠C,∠CAD+∠CBD=150°-∠C,再由AE是∠CAD的平分线,BF是∠CBD的平分线,可得150°-∠C=2(110°-∠C),即可求解.(1)解:三角形内角和定理(或三角形的内角和等于180°)(2)证明:连接CD并延长至F,∵∠1和∠2分别是△ACD和△BCD的一个外角,∴∠1=∠2+∠A,∠3=∠4+∠B,∴∠1+∠3=∠2+∠A+∠4+∠B,即∠ADB=∠A+∠B+∠ACB;(3)解:由(2)得:∠ADB=∠CAD+∠CBD+∠C,∠AGB=∠CAE+∠CBF+∠C,∵∠ADB=150°,∠AGB=110°,∴∠CAD+∠CBD+∠C=150°,∠CAE+∠CBF+∠C=110°,∴∠CAE+∠CBF=110°-∠C,∠CAD+∠CBD=150°-∠C,∵AE是∠CAD的平分线,BF是∠CBD的平分线,∴∠CAD=2∠CAE,∠CBD=2∠CBF,∴∠CAD+∠CBD=2(∠CAE+∠CBF),∴150°-∠C=2(110°-∠C),解得:∠C=70°.【考点】本题主要考查了三角形的内角和定理,三角形外角的性质,有关角平分线的计算,熟练掌握三角形内角和定理,三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.5、平行【解析】【分析】由邻补角关系得出∠BPQ=115°,得出∠BPQ=∠BNG,由同位角相等即可得出结论.【详解】平行,因为,所以,所以根据“同位角相等,两直线平行”可得.【考点】本题考查了平行线的判定方法、邻补角关系;熟记同位角相等,两直线平行,证出∠BPQ=∠BNG是解决问题的关键.6、(1)见解析(2)BE+CD=BC,(3)①见解析;②【解析】【分析】(1)先根据三角形内角和得:∠BOC=180°−(∠OBC+∠OCB),由角平分线定义得:∠OBC=∠ABC,∠OCB=∠ACB,最后由三角形内角和可得结论;(2)在BC上截取BM=BE,证明△BOE≌△BOM,推出∠BOE=∠BOM=60°,再证明△DCO≌△MCO可得结论;(3)①延长OF到点M,使MF=OF,证明△ODF≌△MEF(SAS),推出OD=EM.过点O作CE,BD的垂线,证明△OBE≌△OBK(AAS)和△ODC≌△OHC,推出EO=OK,OD=OH=EM,BE=BK,CD=CH.据此即可证明结论;②利用①的结论以及三角形面积公式即可求解.(1)证明:∵BD平分∠ABC,CE平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°−(∠OBC+∠OCB)=180°−(∠ABC+∠ACB)=180°−(180°−∠A)=∠A+90°;(2)解:BE+CD=BC.在BC上截取BM=BE,连接OM,如图:∵∠BOC=∠A+90°=120°,∴∠BOE=60°,∵BD平分∠ABC,∴∠EBO=∠MBO,∴△BOE≌△BOM,∴∠BOE=∠BOM=60°,∴∠MOC=∠DOC=60°,∵OC为∠DCM的角平分线,∴∠DCO=∠MCO,在△DCO与△MCO中,,∴△DCO≌△MCO(ASA),∴CM=CD,∴BC=BM+CM=BE+CD;(3)①证明:如图,延长OF到点M,使MF=OF,连接EM,∴OM=2OF.∵F是ED的中点,∴EF=DF,∵∠DFO=∠EFM,∴△ODF≌△MEF(SAS),∴OD=EM.过点O作CE,BD的垂线,分别交BC于点K,H,∴∠OCK+∠OKC=90°.∵∠A=90°,∴∠ACE+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宠物行业市场细分报告:宠物食品市场2025年发展趋势
- 2025浙江武易购贸易有限公司招聘1人备考考试题库附答案解析
- 2025-2030肉牛养殖市场宠物食品原料需求增长与衍生机会研究报告
- 2025-2030耕地占补平衡指标交易规则及土地整治项目收益证券化探索
- 2025-2030羊肉定制化生产模式与个性化需求满足报告
- 2025-2030编剧培训行业市场发展分析及前景趋势与投融资发展机会研究报告
- 2025年宁波北仑区妇幼保健院公开招聘编外用工人员1人考试模拟试题及答案解析
- 2025-2030糖尿病特膳食品研发进展分析及医保支付可能性与天使投资退出机制报告
- 陕西省西安市莲湖区2026届英语九年级第一学期期末调研模拟试题含解析
- 2025-2030离心式潜水泵水产养殖增氧设备市场增长潜力
- 肖婷民法总则教学课件
- 教育培训课程开发与实施指南模板
- 2025保密协议范本:物流行业货物信息保密
- 2025卫星互联网承载网技术白皮书-未来网络发展大会
- 顺丰转正考试题库及答案
- 半导体行业面试问题及答案解析
- 《研学旅行课程设计与实施》全套教学课件
- DB15T 2618-2022 公路工程工地试验室建设与管理规范
- 2025至2030年中国绿色船舶行业发展前景预测及投资方向研究报告
- 2025年小学生“学宪法、讲宪法”网络知识竞赛题库及答案
- 八师兵团职工考试题库及答案
评论
0/150
提交评论