2022山东省荣成市中考数学(能力提升)附答案详解_第1页
2022山东省荣成市中考数学(能力提升)附答案详解_第2页
2022山东省荣成市中考数学(能力提升)附答案详解_第3页
2022山东省荣成市中考数学(能力提升)附答案详解_第4页
2022山东省荣成市中考数学(能力提升)附答案详解_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省荣成市中考数学考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、下列图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.2、如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接.下列结论一定正确的是(

)A. B. C. D.3、把抛物线的图象向左平移1个单位,再向上平移2个单位,所得的抛物线的函数关系式是(

)A. B. C. D.4、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是()A.AM=BM B.CM=DM C. D.5、如图,一个油桶靠在直立的墙边,量得并且则这个油桶的底面半径是()A. B. C. D.二、多选题(5小题,每小题3分,共计15分)1、若二次函数(a是不为0的常数)的图象与x轴交于A、B两点.则以下结论正确的有(

)A.B.当时,y随x的增大而增大C.无论a取任何不为0的数,该函数的图象必经过定点D.若线段AB上有且只有5个横坐标为整数的点,则a的取值范围是2、运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线.不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论正确的是(

)A.足球距离地面的最大高度为20mB.足球飞行路线的对称轴是直线C.足球被踢出9s时落地D.足球被踢出1.5s时,距离地面的高度是11m3、关于抛物线y=(x﹣2)2+1,下列说法不正确的是(

)A.开口向上,顶点坐标(﹣2,1)

B.开口向下,对称轴是直线x=2C.开口向下,顶点坐标(2,1)

D.当x>2时,函数值y随x值的增大而增大4、已知关于的方程,下列说法不正确的是(

)A.当时,方程无解 B.当时,方程有两个相等的实数根C.当时,方程有两个相等的实数根 D.当时,方程有两个不相等的实数根5、如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+17第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如果点与点B关于原点对称,那么点B的坐标是______.2、到点的距离等于8厘米的点的轨迹是__.3、如图,把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,则旋转角α的度数为_____.4、不透明袋子中装有10个球,其中有3个黄球、5个红球、2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黄球的概率是_______.5、如果关于x的方程x2﹣3x+k=0(k为常数)有两个相等的实数根,那么k的值是___.四、简答题(2小题,每小题10分,共计20分)1、已知抛物线c:y=-x2-2x+3和直线l:y=x+d。将抛物线c在x轴上方的部分沿x轴翻折180°,其余部分保持不变,翻折后的图象与x轴下方的部分组成一个“M”型的新图象(即新函数m:y=-|x2+2x-3|的图象)。(1)当直线l与这个新图象有且只有一个公共点时,d=;(2)当直线l与这个新图象有且只有三个公共点时,求d的值;(3)当直线l与这个新图象有且只有两个公共点时,求d的取值范围;(4)当直线l与这个新图象有四个公共点时,直接写出d的取值范围.2、据说,在距今2500多年前,古希腊数学家就已经较准确地测出了埃及金字塔的高度,操作过程大致如下:如图所示,设AB是金字塔的高,在某一时刻,阳光照射下的金字塔在底面上投下了一个清晰的阴影,塔顶A的影子落在地面上的点C处,金字塔底部可看作方正形FGHI,测得正方形边长FG长为160米,点B在正方形的中心,BC与金字塔底部一边垂直于点K,与此同时,直立地面上的一根标杆DO留下的影子是OE,射向地面的太阳光线可看作平行线(AC∥DE),此时测得标杆DO长为1.2米,影子OE长为2.7米,KC长为250米,求金字塔的高度AB及斜坡AK的坡度(结果均保留四个有效数字)五、解答题(4小题,每小题10分,共计40分)1、新高考“3+1+2”是指:3,语数外三科是必考科目;1,物理、历史两科中任选一科;2,化学、生物、地理、政治四科中任选两科.某同学确定选择“物理”,但他不确定其它两科选什么,于是他做了一个游戏:他拿来四张不透明的卡片,正面分别写着“化学、生物、地理、政治”,再将这四张卡片背面朝上并打乱顺序,然后从这四张卡片中随机抽取两张,请你用画树状图(或列表)的方法,求该同学抽出的两张卡片是“化学、政治”的概率.2、太原是国家历史文化名城,有很多旅游的好去处,周末哥哥计划带弟弟出去玩,放假前他收集了太原动物园、晋祠公园、森林公园、汾河湿地公园四个景点的旅游宣传卡片,这些卡片的大小、形状及背面完全相同,分别用D,J,S,F表示,如图所示,请用列表或画树状图的方法,求下列事件发生的概率.(1)把这四张卡片背面朝上洗匀后,弟弟从中随机抽取一张,作好记录后,将卡片放回洗匀,哥哥再抽取一张,求两人抽到同一景点的概率;(2)把这四张卡片背面朝上洗匀后,弟弟和哥哥从中各随机抽取一张(不放回),求两人抽到动物园和森林公园的概率.3、小宇和小伟玩“石头、剪刀、布”的游戏.这个游戏的规则是:“剪刀”胜“布”,“布”胜“石头”,“石头”胜“剪刀”,手势相同不分胜负.如果二人同时随机出手(分别出三种手势中的一种手势)一次,那么小宇获胜的概率是多少?4、某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.x407090y1809030W360045002100(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.-参考答案-一、单选题1、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.2、D【解析】【分析】利用旋转的性质得AC=CD,BC=EC,∠ACD=∠BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出,所以选项D正确;再根据∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB判断选项B不一定正确即可.【详解】解:∵绕点顺时针旋转得到,∴AC=CD,BC=EC,∠ACD=∠BCE,∴∠A=∠CDA=;∠EBC=∠BEC=,∴选项A、C不一定正确,∴∠A=∠EBC,∴选项D正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB不一定等于,∴选项B不一定正确;故选D.【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.3、A【解析】【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:∵抛物线的顶点坐标为(2,1),∴向左平移1个单位,再向上平移2个单位后的顶点坐标是(1,3)∴所得抛物线解析式是.故选:A.【考点】本题考查了二次函数图象的平移,利用顶点的变化确定抛物线解析式的变化更简便.4、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦AB⊥CD,CD过圆心O,∴AM=BM,,,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B.【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.5、C【解析】【分析】根据切线的性质,连接过切点的半径,构造正方形求解即可.【详解】如图所示:设油桶所在的圆心为O,连接OA,OC,∵AB、BC与⊙O相切于点A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四边形OABC是正方形,∴OA=AB=BC=OC=0.8m,故选:C.【考点】考查了切线的性质和正方形的判定、性质,解题关键是理解和掌握切线的性质.二、多选题1、ACD【解析】【分析】求得顶点坐标,根据题意即可判断①正确;根据二次函数的性质即可判断②错误;二次函数是不为0的常数)的顶点,即可判断③错误;根据题意时,时,即可判断④正确.【详解】解:二次函数,顶点为,在轴的下方,∵函数的图象与轴交于、两点,抛物线开口向上,,故①正确;时,随的增大而增大,故②错误;由题意可知当,二次函数是不为0的常数)的图象一定经过点,故③正确;线段上有且只有5个横坐标为整数的点,且对称轴为直线,∴当时,,当时,,,解得,故④正确;故选:ACD.【考点】本题考查了二次函数的性质,二次函数图象与系数的关系,二次函数图象上点的坐标特征,能够理解题意,利用二次函数的性质解答是解题的关键.2、BC【解析】【分析】由题意,抛物线经过(0,0),(9,0),所以可以假设抛物线的解析式为h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判断.【详解】解:由题意,抛物线的解析式为h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故A错误,∴抛物线的对称轴t=4.5,故B正确,∵t=9时,h=0,∴足球被踢出9s时落地,故C正确,∵t=1.5时,h=11.25,故D错误.∴正确的有②③,故选:BC【考点】本题考查二次函数的应用、求出抛物线的解析式是解题的关键,属于中考常考题型.3、ABC【解析】【分析】由抛物线的解析式可求得其对称轴、开口方向、顶点坐标,进一步可得出其增减性,可得出答案.【详解】解:∵y=(x﹣2)2+1,∴抛物线开口向上,对称轴为直线x=2,顶点坐标为(2,1),∴A、B、C不正确;当x>2时,y随x的增大而增大,∴D正确,故选:ABC.【考点】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=中,对称轴为直线x=h,顶点坐标为(h,k).4、ABD【解析】【分析】利用k的值,分别代入求出方程的根的情况即可.【详解】关于的方程,A当k=0时,x-1=0,则x=1,故此选项错误,符合题意;B当k=1时,-1=0,x=±1,方程有两个不相等的实数解,故此选项错误,符合题意;C当k=-1时,,则,,此时方程有两个相等的实数根,故此选项正确,不符合题意;D当时,根据A选项,若k=0,此时方程有一个实数根,故此选项错误,符合题意,故选:ABD.【考点】此题主要考查了一元二次方程的解,代入k的值判断方程根的情况是解题关键.5、ACD【解析】【分析】根据图象左移加,右移减,图象上移加,下移减,可得答案.【详解】解:A、y=x2−1,先向上平移1个单位得到y=x2,再向上平移1个单位可以得到y=x2+1,故A符合题意;B、y=x2+6x+5=(x+3)2−4,右移3个单位,再上移5得到y=x2+1,故B不符合题意;C、y=x2+4x+4=(x+2)2,先向右平移2个单位得到y=(x+2−2)2=x2,再向上平移1个单位得到y=x2+1,故C符合题意;D、y=x2+8x+17=(x+4)2+1,先向右平移2个单位得到y=(x+4−2)2+1,再向右平移1个单位得到y=(x+4−2-2)2+1=x2+1,故D符合题意.故选:ACD.【考点】本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,注意由目标函数图象到原函数图象方向正好相反.三、填空题1、【分析】关于原点对称的点坐标特征为:横坐标、纵坐标都互为相反数;进而求出点B坐标.【详解】解:由题意知点B横坐标为;纵坐标为;故答案为:.【点睛】本题考查了关于原点对称的点的坐标知识.解题的关键在于熟练记忆关于原点对称的点坐标中相对应的坐标互为相反数.2、以点为圆心,8厘米长为半径的圆【分析】由题意直接根据圆的定义进行分析即可解答.【详解】到点的距离等于8厘米的点的轨迹是:以点为圆心,2厘米长为半径的圆.故答案为:以点为圆心,8厘米长为半径的圆.【点睛】本题主要考查了圆的定义,正确理解定义是关键,注意掌握圆的定义是在同一平面内到定点的距离等于定长的点的集合.3、##【分析】由旋转的性质可得再利用三角形的外角的性质求解从而可得答案.【详解】解:把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,故答案为:【点睛】本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解是解本题的关键.4、【解析】【分析】用黄球的个数除以总球的个数即可得出取出黄球的概率.【详解】解:∵不透明的袋子中装有10个球,其中有3个黄球、5个红球、2个黑球,∴从袋子中随机取出1个球,则它是黄球的概率为;故答案为:.【考点】此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.5、【解析】【分析】根据判别式的意义得到Δ=(-3)2-4k=0,然后解一元一次方程即可.【详解】解:根据题意得Δ=(-3)2-4k=0,解得k=.故答案为.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.四、简答题1、(1)d=;(2)d=或d=(3)<d<或d<;(4)<d<。【解析】【分析】(1)令-x2-2x+3=x+d求解即可;(2)设抛物线c:y=-x2-2x+3与x轴交于点A(-3,0),点B(1,0),则根据方程有两个相等的实根求出P的坐标,然后求解即可;(3)(4)根据(2)求出的P点坐标进行数形结合画图找出d的取值范围即可.【详解】解:(1)当直线l经过点A(-3,0)时,d=;(2)设抛物线c:y=-x2-2x+3与x轴交于点A(-3,0),点B(1,0),直线l:y=x+d与抛物线c:y=x2+2x-3(-3<x<1)相切于点P,则点P的横坐标恰好是方程x+d=x2+2x-3,即2x2+3x-2d-6=0(-3<x<1)的两个相等实数根,解△=9+8(2d+6)=0得d=,∴点P的坐标为().①当直线l经过点B(1,0)时,直线l与这个新图象有且只有三个公共点,解得d=;②当直线l经过点P()时,直线l与这个新图象有且只有三个公共点,解得d=;

∴综合①、②得:d=或d=(3)①由平移直线l可得:直线l从经过点A(-3,0)开始向下平移到直线l经过点P()的过程中,直线l与这个新图象有且只有两个公共点,可得<d<②直线l从经过点P()继续向下平移的过程中,直线l与这个新图象有且只有两个公共点,可得d<;∴综合①、②得:<d<或d<;(4)如图:当直线l经过点B(1,0)时,直线l与这个新图象有且只有三个公共点,解得d=;当直线l继续向下平移的过程中经过点P(),直线l与这个新图象有且只有三个公共点,可得d=;∴要使直线l与这个新图象有四个公共点则d的取值范围是<d<.【考点】本题考查的是二次函数综合运用,关键是通过数形变换,确定变换后图形与直线的位置关系.2、金字塔的高度AB为米,斜坡AK的坡度为1.833.【解析】【分析】根据同一时刻物高与影长成正比例列式计算即可.【详解】解:∵FGHI是正方形,点B在正方形的中心,BC⊥HG,∴BK∥FG,BK==×160=80,∵根据同一时刻物高与影长成正比例,∴,即,解得:AB=米,连接AK,=1.833.∴金字塔的高度AB为米,斜坡AK的坡度为1.833.【考点】本题考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解,解此题的关键是找到各部分以及与其对应的影长.五、解答题1、【分析】用A、B、C、D分别表示化学、生物、地理、政治,然后画出树状图求解.【详解】解:用A、B、C、D分别表示化学、生物、地理、政治,画树状图如下,,由树状图可知,共有12种等可能发生的情况,其中符合条件的情况有2种,所以该同学抽出的两张卡片是“化学、政治”的概率=.【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.2、(1);(2).【分析】(1)根据题意列表可得共有16种等可能的结果,其中两人抽到同一景点的结果有4种,进而由概率公式求解即可;(2)根据题意列表可得共有12种等可能的结果,其中两人抽到动物园和森林公园的结果有2种,进而由概率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论