版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省林州市中考数学高分题库考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:…-2013……6-4-6-4…下列各选项中,正确的是A.这个函数的图象开口向下B.这个函数的图象与x轴无交点C.这个函数的最小值小于-6D.当时,y的值随x值的增大而增大2、已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积是()A. B.π﹣2 C.1+ D.1﹣3、从下列命题中,随机抽取一个是真命题的概率是()(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)弧长是,面积是的扇形的圆心角是.A. B. C. D.14、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为()A.105° B.120° C.135° D.150°5、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是(
)A. B.C. D.二、多选题(5小题,每小题3分,共计15分)1、如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转a度,得到△A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:其中正确的有(
).A.∠CDF=a度B.A1E=CFC.DF=FCD.BE=BF2、如图,PA、PB是的切线,切点分别为A、B,BC是的直径,PO交于E点,连接AB交PO于F,连接CE交AB于D点.下列结论正确的是(
)A.CE平分∠ACB B. C.E是△PAB的内心 D.3、若为圆内接四边形,则下列哪个选项可能成立(
)A. B.C. D.4、如图,二次函败y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的交点的横坐标分别为﹣1、3,则下列结论中正确的有()A.abc<0 B.2a+b=0 C.3a+2c>0 D.对于任意x均有ax2﹣a+bx﹣b≥05、如图,抛物线过点,对称轴是直线.下列结论正确的是(
)A.B.C.若关于x的方程有实数根,则D.若和是抛物线上的两点,则当时,第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、若抛物线的图像与轴有交点,那么的取值范围是________.2、如图,已知⊙O的半径为2,弦AB的长度为2,点C是⊙O上一动点若△ABC为等腰三角形,则BC2为_______.3、如图,在中,,,则图中阴影部分的面积是_________.(结果保留)4、如图,与x轴交于、两点,,点P是y轴上的一个动点,PD切于点D,则△ABD的面积的最大值是________;线段PD的最小值是________.5、如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连接BD,则对角线BD的最小值为_____.四、简答题(2小题,每小题10分,共计20分)1、渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润元与降价元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?2、(1)计算:.(2)解方程:.五、解答题(4小题,每小题10分,共计40分)1、已知,P是直线AB上一动点(不与A,B重合),以P为直角顶点作等腰直角三角形PBD,点E是直线AD与△PBD的外接圆除点D以外的另一个交点,直线BE与直线PD相交于点F.(1)如图,当点P在线段AB上运动时,若∠DBE=30°,PB=2,求DE的长;(2)当点P在射线AB上运动时,试探求线段AB,PB,PF之间的数量关系,并给出证明.2、为增加农民收入,助力乡村振兴.某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8≤x≤40)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)求五一期间销售草莓获得的最大利润.3、用适当的方法解下列方程:(1)
(2)4、如图,ABC是⊙O的内接三角形,,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AD=6,求线段AE的长.-参考答案-一、单选题1、C【解析】【分析】利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断.【详解】解:设二次函数的解析式为,依题意得:,解得:,∴二次函数的解析式为=,∵,∴这个函数的图象开口向上,故A选项不符合题意;∵,∴这个函数的图象与x轴有两个不同的交点,故B选项不符合题意;∵,∴当时,这个函数有最小值,故C选项符合题意;∵这个函数的图象的顶点坐标为(,),∴当时,y的值随x值的增大而增大,故D选项不符合题意;故选:C.【考点】本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键.2、B【解析】【分析】如图,标注顶点,连接AB,由图形的对称性可得阴影部分面积=S扇形AOB-S△ABO,从而可得答案.【详解】解:标注顶点,连接AB,由对称性可得:阴影部分面积=S扇形AOB-S△ABO=.故选:B.【考点】本题考查的是阴影部分的面积的计算,扇形面积的计算,掌握“图形的对称性”是解本题的关键.3、C【解析】【分析】分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解,是真命题,(3)棱长是的正方体的表面展开图的周长一定是,是真命题,(4)设扇形半径为r,圆心角为n,∵弧长是,则=,则,∵面积是,则=,则360×240,则,则n=3600÷24=150°,故扇形的圆心角是,是假命题,则随机抽取一个是真命题的概率是,故选C.【考点】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.4、B【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:,∴;故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.5、D【解析】【分析】直接根据“左加右减,上加下减”的原则进行解答即可.【详解】由“左加右减”的原则可知,抛物线y=2x2向右平移2个单位所得抛物线是y=2(x−2)2;由“上加下减”的原则可知,抛物线y=2(x−2)2向下平移1个单位所得抛物线是y=2(x−2)2−1.故选D.【考点】本题考查了二次函数图象与几何变换,解题的关键是掌握二次函数图象与几何变换.二、多选题1、ABD【解析】【分析】根据等腰三角形的性质由BA=BC得∠A=∠C,再根据旋转的性质得BA=BA1=BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,而根据对顶角相等得∠BFC1=∠DFC,于是可根据三角形内角和定理得到∠CDF=∠FBC1=α;利用“ASA”证明△BAE≌△BC1F,则BE=BF,所以A1E=CF;由于∠CDF=α,则只有当旋转角等于∠C时才有DF=FC.【详解】解:∵BA=BC,∴∠A=∠C,∵△ABC绕点B顺时针旋转α度,得到△A1BC1,∴BA=BA1,BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,∵∠BFC1=∠DFC,∴∠CDF=∠FBC1=α,所以A正确,∴BA=BA1=BC=BC1,在△BAE和△BC1F中,∴△BAE≌△BC1F(ASA),∴BE=BF,故D正确而BA1=BC,∴A1E=CF,所以B正确;∵∠CDF=α,∴当旋转角等于∠C时,DF=FC,所以C错误;故选ABD.【考点】本题主要考查了旋转的性质,全等三角形的性质与判定,等腰三角形的性质,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.2、ACD【解析】【分析】连接OA,BE,根据PA、PB是⊙O的切线,可得PA=PB,OA=OB,可得OP是AB的垂直平分线,根据垂径定理,进而可以判断A;根据OB=OC,AF=BF,可得OF是三角形BAC的中位线,进而即可判断D;证明∠PBE=∠EBA,∠APE=∠BPE,即可判断C;根据AC∥OE,可得△CDA∽△EDF,进而可以判断B.【详解】如图,连接OA,BE,∵PA、PB是⊙O的切线,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分线,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正确;∵BC是⊙O的直径,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正确;∵PB是⊙O的切线,∴∠PBE+∠EBC=90°,∵BC是⊙O的直径,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的内心;故C正确;∵AC∥OE,∴△CDA∽△EDF.故B错误;∴结论正确的是A,C,D.故选:ACD.【考点】此题考查了圆周角定理、切线的性质、三角形中位线定理、及勾股定理的知识,解答本题的关键是熟练掌握切线的性质及圆周角定理,注意各个知识点之间的融会贯通.3、BD【解析】【分析】根据圆内接四边形的性质得出∠A+∠C=∠B+∠D=180°,再逐个判断即可.【详解】解:∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∠B+∠D=180°,∴∠A+∠C=∠B+∠D,A.∵,∴∠A+∠C≠∠B+∠D,故本选项不符合题意;B.∵,∴∠A+∠C=∠B+∠D,故本选项符合题意;C.∵,∴∠A+∠C≠∠B+∠D,故本选项不符合题意;D.∵,∴∠A+∠C=∠B+∠D,故本选项符合题意;故选:BD.【考点】本题考查了圆周角定理和圆内接四边形的性质,注意:圆内接四边形的对角互补.4、BD【解析】【分析】由抛物线开口方向得到a>0,利用抛物线与x轴的交点问题和抛物线的对称性得到抛物线的对称轴为直线x=1,即-=1,所以b=-2a<0,利用抛物线与y轴的交点位置得到c<0,则可对A进行判断;利用b=-2a可对B进行判断;由于x=-1时,y=0,所以a-b+c=0,则c=-3a,3a+2c=-3a<0,于是可对C进行判断;根据二次函数性质,x=1时,y的值最小,所以a+b+c≤ax2+bx+c,于是可对D进行判断.【详解】解:∵抛物线开口向上,∴a>0,∵抛物线与x轴的交点的坐标分别为(-1,0),(3,0),∴抛物线的对称轴为直线x=1,即-=1,∴b=-2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以A错误;∵b=-2a,∴2a+b=0,所以B正确;∵x=-1时,y=0,∴a-b+c=0,即a+2a+c=0,∴c=-3a,∴3a+2c=3a-6a=-3a<0,所以C错误;∵x=1时,y的值最小,∴对于任意x,a+b+c≤ax2+bx+c,即ax2-a+bx-b≥0,所以D正确.故选:BD.【考点】本题考查了二次函数与不等式(组):函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围;利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.5、D【解析】【详解】解:A.∵抛物线开口向下,∴a<0,∵对称轴在y轴左侧,∴a、b同号,∴b<0,∵抛物线与y轴交点在正半轴上,∴c>0,∴abc>0,故此选项不符合题意;B.∵(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),∵抛物线过点,对称轴是直线,∴抛物线与x轴另一交点为(2,0),∴当x=2时,y=ax2+bx+c=4a+c+2b=0,∴(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,∴(4a+c)2=4b2,故此选项不符合题意;C.∵-=-1,∴b=2a,∵当x=2时,y=ax2+bx+c=4a+c+2b=0,∴4a+c+4a=0,∴c=-8a,∵关于x的方程有实数根,∴Δ=b2-4a(c-m)≥0,∴(2a)2-4a(-8a-m)≥0,∵a<0,∴9a+m≤0,故此选项不符合题意;D.∵|x1+1|=|x1-(-1)|,|x2+1|=|x2-(-1)|,又∵|x1+1|>|x2+1|,∴点(x1,y1)到对称轴的距离大于点(x2,y2)到对称轴的距离,∴y1<y2,故此选项符合题意;故选:D.【考点】本题考查二次函数图象与系数的关系,二次函数的性质,二次函数与一元二次方程的联系,熟练掌握二次函数图象性质是解题的关键.三、填空题1、【解析】【分析】由抛物线的图像与轴有交点可知,从而可求得的取值范围.【详解】解:∵抛物线的图像与轴有交点∴令,有,即该方程有实数根∴∴.故答案是:【考点】本题考查了二次函数与轴的交点情况与一元二次方程分的情况的关系、解一元一次不等式,能由已知条件列出关于的不等式是解题的关键.2、4或12或【分析】分三种情况讨论:当AB=BC时、当AB=AC时、当AC=BC时,根据垂径定理和勾股定理即可求解.【详解】解:如图1,当AB=BC时,BC=2,故BC2=4;如图2,当AB=AC=2时,过A作AD⊥BC于D,连接OC,∴BD=CD,设OD=x,则在Rt△ACD中,AC2=CD2+AD2,在Rt△OCD中,OC2=CD2+OD2,∴CD2=AC2-AD2=OC2-OD2即22-(2-x)2=22-x2解得x=1∴CD=∴BC=2∴BC2=12;如图3,当AC=BC时,则C在AB的垂直平分线上,∴CD经过圆心O,AD=BD==1,∵OA=2,∴OD=,∴CD=CO+OD=2+,CD=C'O-OD=2-,∴BC2=CD2+BD2=(2+)2+12=,BC2=CD2+BD2=(2-)2+12=,综上,BC2为4或12或故答案为:4或12或.【点睛】本题考查了垂径定理,等腰三角形的性质,勾股定理的应用,熟练掌握性质定理是解题的关键.3、【解析】【分析】由,根据圆周角定理得出,根据S阴影=S扇形AOB-可得出结论.【详解】解:∵,∴,∴S阴影=S扇形AOB-,故答案为:.【考点】本题主要考查圆周角定理、扇形的面积计算,根据题意求得三角形与扇形的面积是解答此题的关键.4、【分析】根据题中点的坐标可得圆的直径,半径为1,分析以AB定长为底,点D在圆上,高最大为圆的半径,即可得出三角形最大的面积;连接AP,设点,根据切线的性质及勾股定理可得,由其非负性即可得.【详解】解:如图所示:当点P到如图位置时,的面积最大,∵、,∴圆的直径,半径为1,∴以AB定长为底,点D在圆上,高最大为圆的半径,如图所示:此时面积的最大值为:;如图所示:连接AP,∵PD切于点D,∴,∴,设点,在中,,,∴,在中,,∴,则,当时,PD取得最小值,最小值为,故答案为:①;②.【点睛】题目主要考查切线的性质及勾股定理的应用,理解题意,作出相应图形求出解析式是解题关键.5、1【解析】【分析】由矩形的性质可知BD=AC,再结合顶点到x轴的距离最近可知当点A在顶点处时满足条件,求得抛物线的顶点坐标即可求得答案.【详解】解:∵AC⊥x轴,∴当点A为抛物线顶点时,AC有最小值,∵抛物线y=x2﹣2x+2=(x−1)2+1,∴顶点坐标为(1,1),∴AC的最小值为1,∵四边形ABCD为矩形,∴BD=AC,∴BD的最小值为1,故答案为:1.【考点】本题主要考查了二次函数的性质及矩形的性质,确定出AC最小时的位置是解题的关键.四、简答题1、(1),9600;(2)降价4元,最大利润为9800元;(3)43【解析】【分析】(1)若降价元,则每天销量可增加千克,根据利润公式求解并整理即可得到解析式,然后代入求出对应函数值即可;(2)将(1)中的解析式整理为顶点式,然后利用二次函数的性质求解即可;(3)令可解出对应的的值,然后根据“让利于民”的原则选择合适的的值即可.【详解】(1)若降价元,则每天销量可增加千克,∴,整理得:,当时,,∴每天的利润为9600元;(2),∵,∴当时,取得最大值,最大值为9800,∴降价4元,利润最大,最大利润为9800元;(3)令,得:,解得:,,∵要让利于民,∴,(元)∴定价为43元.【考点】本题考查二次函数的实际应用,弄清数量关系,准确求出函数解析式并熟练掌握二次函数的性质是解题关键.2、(1)10;(2)无解.【解析】【分析】(1)原式利用绝对值的代数意义,特殊角三角函数值,二次根式性质,负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)原式;(2)去分母得:2+1−x=2x−6,解得:x=3,经检验x=3是增根,分式方程无解.【考点】此题考查了解分式方程以及实数的运算,熟记特殊角三角函数值,实数的运算法则以及分式方程的解法是解本题的关键.五、解答题1、(1)(2)PF=AB-PB或PF=AB+PB,理由见解析【分析】(1)根据△PBD等腰直角三角形,PB=2,求出DB的长,由⊙O是△PBD的外接圆,∠DBE=30°,可得答案;(2)根据同弧所对的圆周角,可得∠ADP=∠FBP,由△PBD等腰直角三角形,得∠DPB=∠APD=90°,DP=BP,可证△APD≌△FPB,可得答案.【详解】解:(1)由题意画以下图,连接EP,∵△PBD等腰直角三角形,⊙O是△PBD的外接圆,∴∠DPB=∠DEB=90°,∵PB=2,∴,∵∠DBE=30°,∴(2)①点P在点A、B之间,由(1)的图根据同弧所对的圆周角相等,可得:∠ADP=∠FBP,又∵△PBD等腰直角三角形,∴∠DPB=∠APD=90°,DP=BP,在△APD和△FPB中∴△APD≌△FPB∴AP=FP,∵AP+PB=AB∴FP+PB=AB,∴FP=AB-PB,②点P在点B的右侧,如下图:∵△PBD等腰直角三角形,∴∠DPB=∠APF=90°,DP=BP,∵∠PBF+∠EBP=180°,∠PDA+∠EBP=180°,∴∠PBF=∠PDA,在△APD和△FPB中∴△APD≌△FPB∴AP=FP,∴AB+PB=AP,∴AB+PB=PF,∴PF=AB+PB.综上所述,FP=AB-PB或PF=AB+PB.【点睛】本题考查了圆的性质,等腰直角三角形,三角形全等的判定,做题的关键是注意(2)的两种情况.2、(1);(2)最大利润为3840元【解析】【分析】(1)分为8≤x≤32和32<x≤40求解析式;(2)根据“利润=(售价−成本)×销售量”列出利润的表达式,在根据函数的性质求出最大利润.【详解】解:(1)当8≤x≤32时,设y=kx+b(k≠0),则,解得:,∴当8≤x≤32时,y=−3x+216,当32<x≤40时,y=120,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社团活动授课活动方案
- 社区植物认知活动方案
- 科技公司质量月活动方案
- 社会主义革命活动方案
- 社区手工趣味活动方案
- 社区义诊活动活动方案
- 科技公司周年庆活动方案
- 学校数学个人科研工作方案
- 二零二五年度全国区域代理代销合作合同范本
- 城市管道检查井施工技术方案样本
- 2025至2030中国手术防粘连液经营风险与未来规模预测报告
- 水电站消防知识培训课件
- 2025年国企运维岗笔试题目及答案
- 医院产科科室简介
- 《世界经典神话与传说故事》测试题及答案
- 医院科室人文建设实施路径
- 基层医疗机构慢性病管理规范
- 中国联通校招笔试题库及答案详解
- 2025年中国混凝土灌注桩行业市场发展现状及投资方向研究报告
- 创伤性脑出血的健康宣教
- 宁夏教研员管理办法
评论
0/150
提交评论