




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省和龙市中考数学高频难、易错点题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、下列关于随机事件的概率描述正确的是()A.抛掷一枚质地均匀的硬币出现“正面朝上”的概率为0.5,所以抛掷1000次就一定有500次“正面朝上”B.某种彩票的中奖率为5%,说明买100张彩票有5张会中奖C.随机事件发生的概率大于或等于0,小于或等于1D.在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率2、如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55° B.65° C.60° D.75°3、若关于x的二次函数y=ax2+bx的图象经过定点(1,1),且当x<﹣1时y随x的增大而减小,则a的取值范围是()A. B. C. D.4、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是(
)A. B.C. D.5、如图,该几何体的左视图是()A. B. C. D.二、多选题(5小题,每小题3分,共计15分)1、在图所示的4个图案中不包含图形的旋转的是(
)A. B. C. D.2、已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论正确的有(
)A.A、B关于x轴对称; B.A、B关于y轴对称;C.A、B关于原点对称; D.若A、B之间的距离为43、若为圆内接四边形,则下列哪个选项可能成立(
)A. B.C. D.4、如图,PA、PB是的切线,切点分别为A、B,BC是的直径,PO交于E点,连接AB交PO于F,连接CE交AB于D点.下列结论正确的是(
)A.CE平分∠ACB B. C.E是△PAB的内心 D.5、二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-1,n),其部分图象如图所示.下列结论正确的是(
)A.B.C.若,是抛物线上的两点,则D.关于x的方程无实数根第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、边长为2的正三角形的外接圆的半径等于___.2、从,0,1,2这四个数中任取一个数,作为关于x的方程中a的值,则该方程有实数根的概率为_________.3、如图,半圆O中,直径AB=30,弦CD∥AB,长为6π,则由与AC,AD围成的阴影部分面积为_______.4、若抛物线的图像与轴有交点,那么的取值范围是________.5、如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是_________.四、简答题(2小题,每小题10分,共计20分)1、如图,抛物线与轴交于两点,与轴交于点,且,.(1)求抛物线的表达式;(2)点是抛物线上一点.①在抛物线的对称轴上,求作一点,使得的周长最小,并写出点的坐标;②连接并延长,过抛物线上一点(点不与点重合)作轴,垂足为,与射线交于点,是否存在这样的点,使得,若存在,求出点的坐标;若不存在,请说明理由.2、(1)方法导引:问题:如图1,等边三角形的边长为6,点是和的角平分线交点,,绕点任意旋转,分别交的两边于,两点.求四边形面积.讨论:①小明:在旋转过程中,当经过点时,一定经过点.②小颖:小明的分析有道理,这样我们就可以利用“”证出.③小飞:因为,所以只要算出的面积就得出了四边形的面积.老师:同学们的思路很清晰,也很正确.在分析和解决问题时,我们经常会借用特例作辅助线来解决一般问题:请你按照讨论的思路,直接写出四边形的面积:________.(2)应用方法:①特例:如图2,的顶点在等边三角形的边上,,,边于点,于点,求的面积.②探究:如图3,已知,顶点在等边三角形的边上,,,记的面积为,的面积为,求的值.③应用:如图4,已知,顶点在等边三角形的边的延长线上,,,记的面积为,的面积为,请直接写出与的关系式.
五、解答题(4小题,每小题10分,共计40分)1、根据下列条件,求二次函数的解析式.(1)图象经过(0,1),(1,﹣2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);2、如图,AB是⊙O的直径,点D,E在⊙O上,四边形BDEO是平行四边形,过点D作交AE的延长线于点C.(1)求证:CD是⊙O的切线.(2)若,求阴影部分的面积.3、若二次函数图像经过,两点,求、的值.4、如图,四边形ABCD内接于⊙O,AC是直径,点C是劣弧BD的中点.(1)求证:.(2)若,,求BD.-参考答案-一、单选题1、D【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【详解】解:概率反映的是随机性的规律,但每次试验出现的结果具有不确定,故选项A、B错误;随机事件发生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故选项C错误;在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率,故选项D正确;故选:D.【点睛】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、B【解析】【分析】连接CD,根据圆内接四边形的性质得到∠CDB=180°﹣∠A=130°,根据垂径定理得到OD⊥BC,求得BD=CD,根据等腰三角形的性质即可得到结论.【详解】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故选:B.【考点】本题考查了圆内接四边形的性质,垂径定理,等腰三角形的性质等知识.正确理解题意是解题的关键.3、D【解析】【分析】根据题意开口向上,且对称轴−≥−1,a+b=1,即可得到−≥−1,从而求解.【详解】由二次函数y=ax2+bx可知抛物线过原点,∵抛物线定点(1,1),且当x<-1时,y随x的增大而减小,∴抛物线开口向上,且对称轴−≥−1,a+b=1,∴a>0,b=1﹣a,∴﹣≥﹣1,∴,故选:D.【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,根据题意得关于a的不等式组是解题的关键.4、D【解析】【分析】直接根据“左加右减,上加下减”的原则进行解答即可.【详解】由“左加右减”的原则可知,抛物线y=2x2向右平移2个单位所得抛物线是y=2(x−2)2;由“上加下减”的原则可知,抛物线y=2(x−2)2向下平移1个单位所得抛物线是y=2(x−2)2−1.故选D.【考点】本题考查了二次函数图象与几何变换,解题的关键是掌握二次函数图象与几何变换.5、C【分析】根据从左边看得到的图形是左视图解答即可.【详解】解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C正确.故选C.【点睛】本题主要考查了简单组合体的三视图,掌握三视图的定义成为解答本题的关键.二、多选题1、AC【解析】【分析】根据中心对称与轴对称的概念,即可求解.【详解】解:A、是轴对称图形,故本选项符合题意;B、是中心对称图形,属于图形的旋转,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、既是轴对称图形,也是中心对称图形,包含图形的旋转,故本选项不符合题意;故选:AC.【考点】本题主要考查了中心对称与轴对称的概念,熟练掌握轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合是解题的关键.2、BD【解析】【分析】根据点坐标关于原点对称、轴对称的特点,求出对应点坐标即可.【详解】点A(-2,3)关于x轴对称的点为(-2,-3),故A错误点A(-2,3)关于y轴对称的点为(2,3),故B正确点A(-2,3)关于原点对称的点为(2,-3),故C错误点A、点B的纵坐标相同,故A、B之间的距离为,故D正确故选BD【考点】本题考查了点坐标关于x,y轴对称,关于原点中心对称的特点,以及两点间距离公式,熟悉对应知识点是解决本题的关键.3、BD【解析】【分析】根据圆内接四边形的性质得出∠A+∠C=∠B+∠D=180°,再逐个判断即可.【详解】解:∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∠B+∠D=180°,∴∠A+∠C=∠B+∠D,A.∵,∴∠A+∠C≠∠B+∠D,故本选项不符合题意;B.∵,∴∠A+∠C=∠B+∠D,故本选项符合题意;C.∵,∴∠A+∠C≠∠B+∠D,故本选项不符合题意;D.∵,∴∠A+∠C=∠B+∠D,故本选项符合题意;故选:BD.【考点】本题考查了圆周角定理和圆内接四边形的性质,注意:圆内接四边形的对角互补.4、ACD【解析】【分析】连接OA,BE,根据PA、PB是⊙O的切线,可得PA=PB,OA=OB,可得OP是AB的垂直平分线,根据垂径定理,进而可以判断A;根据OB=OC,AF=BF,可得OF是三角形BAC的中位线,进而即可判断D;证明∠PBE=∠EBA,∠APE=∠BPE,即可判断C;根据AC∥OE,可得△CDA∽△EDF,进而可以判断B.【详解】如图,连接OA,BE,∵PA、PB是⊙O的切线,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分线,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正确;∵BC是⊙O的直径,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正确;∵PB是⊙O的切线,∴∠PBE+∠EBC=90°,∵BC是⊙O的直径,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的内心;故C正确;∵AC∥OE,∴△CDA∽△EDF.故B错误;∴结论正确的是A,C,D.故选:ACD.【考点】此题考查了圆周角定理、切线的性质、三角形中位线定理、及勾股定理的知识,解答本题的关键是熟练掌握切线的性质及圆周角定理,注意各个知识点之间的融会贯通.5、CD【解析】【分析】根据二次函数的性质及与x轴另一交点的位置,即可判定A;当x=2时,即可判定B;根据对称性及二次函数的性质,可判定C;根据平移后与x轴有无交点,可判定D.【详解】解:由图象可知:该二次函数图象的对称轴为直线,∴b=2a,由图象可知:该二次函数图象与x轴的左侧交点在-3与-2之间,故与x轴的另一个交点在0与1之间,∴当x=1时,y<0,即a+b+c<0,3a+c<0,故A错误;当x=-2时,y>0,即4a-2b+c>0,故B错误;点关于对称轴对称的点的坐标为,即,在对称轴的左侧y随x的增大而增大,故,故C正确;该二次函数的顶点坐标为(−1,n),将函数向下平移n+1个单位,函数图象与x轴无交点,∴方程无实数根,故D正确,故选:CD.【考点】本题考查了二次函数图象与性质,根据二次函数的图象判定式子是否成立,解题的关键是从图象中找到相关信息.三、填空题1、【分析】过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.【详解】如图所示,是正三角形,故O是的中心,,∵正三角形的边长为2,OE⊥AB∴,,∴,由勾股定理得:,∴,∴,∴(负值舍去).故答案为:.【点睛】本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.2、【分析】根据一元二次方程的定义,可得,根据一元二次方程的判别式的意义得到,可得,然后根据概率公式求解.【详解】解:∵当且,一元二次方程有实数根∴且从,0,1,2这四个数中任取一个数,符合条件的结果有所得方程有实数根的概率为故答案为:【点睛】本题考查了列举法求概率,一元二次方程的定义,一元二次方程根的判别式,掌握以上知识是解题的关键.3、45【分析】连接OC,OD,根据同底等高可知S△ACD=S△OCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.【详解】解:连接OC,OD,∵直径AB=30,∴OC=OD=,∴CD∥AB,∴S△ACD=S△OCD,∵长为6π,∴阴影部分的面积为S阴影=S扇形OCD=,故答案为:45π.【点睛】本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.4、【解析】【分析】由抛物线的图像与轴有交点可知,从而可求得的取值范围.【详解】解:∵抛物线的图像与轴有交点∴令,有,即该方程有实数根∴∴.故答案是:【考点】本题考查了二次函数与轴的交点情况与一元二次方程分的情况的关系、解一元一次不等式,能由已知条件列出关于的不等式是解题的关键.5、2【解析】【分析】根据中心对称的性质AD=DE及∠D=90゜,由勾股定理即可求得AE的长.【详解】∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE=,故答案为.【考点】本题考查了中心对称的性质,勾股定理等知识,关键中心对称性质的应用.四、简答题1、(1);(2)①连接交抛物线对称轴于点,则点即为所求,点的坐标为;②存在;点的坐标为或.【解析】【分析】(1)由,得到A(-2,0),C(3,0),即可写出抛物线的交点式.(2)①因为关于对称轴对称,所以,由两点之间线段最短,知连接交抛物线对称轴于点,则点即为所求,先用待定系数法求出解析式,将对称轴代入得到点坐标.②设点,根据抛物线的解析式、直线的解析式,写出Q、M的坐标,分当在上方、下方两种情况,列关于m的方程,解出并取大于-2的解,即可写出的坐标.【详解】(1)∵,,结合图象,得A(-2,0),C(3,0),∴抛物线可表示为:,∴抛物线的表达式为;(2)①∵关于对称轴对称,∴,∴连接交抛物线对称轴于点,则点即为所求.将点,的坐标代入一次函数表达式,得直线的函数表达式为.抛物线的对称轴为直线,当时,,故点的坐标为;②存在;设点,则,.当在上方时,,,,解得(舍)或;当在下方时,,,,解得(舍)或,综上所述,的值为或5,点的坐标为或.【考点】本题考查了二次函数与一次函数综合问题,熟练掌握待定系数法求解析式、最短路径问题是解题的基础,动点问题中分类讨论与数形结合转化为方程问题是解题的关键.2、(1);(2)①的面积;②xy=12;③.【解析】【分析】(1)连接、,利用ASA证出,从而得出的面积与四边形的面积相等,过点作于点,利用锐角三角函数求出OH即可求出△OBC的面积,从而得出结论;(2)①根据等边三角形的性质可得,从而求出∠BOD,然后根据30°所对的直角边是斜边的一半和勾股定理即可求出OD和BD,从而求出结论;②过点作于,于,根据相似三角形判定定理可得,根据相似三角形的性质列出比例式,变形可得,然后根据三角形的面积公式即可求出结论;③过点作交的延长线于,于,根据相似三角形的判定定理可得,根据相似三角形的性质列出比例式,变形可得,分别求出OM和ON,再结合三角形的面积公式即可求出结论.【详解】解:(1)连接、∵是等边三角形,∴∵是和的角平分线交点∴∴,∴∴∴的面积与四边形的面积相等过点作于点∵,∴∵,∴,∴∴四边形的面积为.故答案为:.(2)①∵是等边三角形,∴∵于点,∴∵,∴,,∴的面积②过点作于,于.由①得:,同理:∵是等边三角形,∴∵,∴∴,∴∴,∴∴③过点作交的延长线于,于.∵,∴∴,∵∴,∴∴∵,,∴,∴∵,,∴,∴∴【考点】此题考查的是全等三角形的判定及性质、等边三角形的性质、相似三角形的判定及性质和锐角三角函数,掌握全等三角形的判定及性质、等边三角形的性质、相似三角形的判定及性质和锐角三角函数是解决此题的关键.五、解答题1、(1)y=4x2﹣7x+1;(2)y=﹣2(x﹣2)2+3.【解析】【分析】(1)先设出抛物线的解析式为y=ax2+bx+c,再将点(0,1),(1,−2),(2,3)代入解析式中,即可求得抛物线的解析式;(2)由于已知抛物线的顶点坐标,则可设顶点式y=a(x−2)2+3,然后把(3,1)代入求出a的值即可.【详解】解:(1)设出抛物线的解析式为y=ax2+bx+c,将(0,1),(1,﹣2),(2,3)代入解析式,得:,解得:,∴抛物线解析式为:y=4x2﹣7x+1;(2)设抛物线解析式为y=a(x﹣2)2+3,把(3,1)代入得:a(3﹣2)2+3=1,解得a=﹣2,所以抛物线解析式为y=﹣2(x﹣2)2+3.【考点】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.2、(1)见详解;(2)【分析】(1)连接OD,由题意易得,则有△ODB是等边三角形,然后可得△AEO也为等边三角形,进而可得OD∥AC,最后问题可求证;(2)由(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 2999-2025耐火材料颗粒体积密度试验方法
- 2025年安全员安全生产操作题库及模拟题
- 2025年英语教师职业等级认证初级考试模拟题与答案详解
- 校园消防安全专题片(3篇)
- 2025年网络安全工程师面试模拟题及面试技巧
- 2025年小学教师安全知识测试题含考核答案
- 2025年安全生产安全管理知识安全趋势题及答案
- 2025届东营市利津县中考冲刺卷数学试题含解析
- 2025年后期制作岗位面试常见问题及答案
- 2025年安全管理竞聘面试常见问题答案
- 危险废物处置服务协议
- 《观光农业概论》课件
- 派出所签订治安调解协议书范文
- 情境领导力培训课件
- DBJ41T 277-2023 装配式钢结构集成楼盖应用技术规程 河南省工程建设标准(住建厅版)
- 飞灰螯合物运输服务方案
- 中建三局社招在线测评题
- 研究生学术表达能力培养智慧树知到答案2024年西安建筑科技大学、清华大学、同济大学、山东大学、河北工程大学、《环境工程》英文版和《环境工程》编辑部
- 玉米种植风险评估与管理
- 2024-2030年中国自动涂胶机行业市场发展趋势与前景展望战略分析报告
- DL∕T 2582.1-2022 水电站公用辅助设备运行规程 第1部分:油系统
评论
0/150
提交评论