




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省汾阳市中考数学测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为(
)A. B. C. D.2、如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,过点C作⊙O的切线,交AB的延长线于点D.设∠A=α,∠D=β,则()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°3、如图,,是上直径两侧的两点.设,则(
)A. B. C. D.4、把方程x2+2x=5(x﹣2)化成ax2+bx+c=0的形式,则a,b,c的值分别为()A.1,﹣3,2 B.1,7,﹣10 C.1,﹣5,12 D.1,﹣3,105、已知关于x的一元二次方程x2﹣3x+1=0有两个不相等的实数根x1,x2,则x12+x22的值是()A.﹣7 B.7 C.2 D.﹣2二、多选题(5小题,每小题3分,共计15分)1、在图所示的4个图案中不包含图形的旋转的是(
)A. B. C. D.2、如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+173、已知,为半径是3的圆周上两点,为的中点,以线段,为邻边作菱形,顶点恰在该圆直径的三等分点上,则该菱形的边长为(
)A. B. C. D.4、已知直角三角形的两条边长恰好是方程的两个根,则此直角三角形斜边长是(
)A. B. C.3 D.55、下列说法中,正确的有()A.等弧所对的圆心角相等B.经过三点可以作一个圆C.平分弦的直径垂直于这条弦D.圆的内接平行四边形是矩形第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、若代数式有意义,则x的取值范围是_____.2、关于的一元二次方程的一个根是2,则另一个根是__________.3、已知函数y的图象如图所示,若直线y=kx﹣3与该图象有公共点,则k的最大值与最小值的和为_____.4、若点A(m,5)与点B(-4,n)关于原点成中心对称,则m+n=________.5、《九章算术》是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多尺,门的对角线长尺,那么门的高和宽各是多少?如果设门的宽为尺,根据题意,那么可列方程___________.四、解答题(6小题,每小题10分,共计60分)1、某服装店在销售中发现:进货价为每件50元,销售价为每件90元的某品牌服装平均每天可售出20件.现服装店决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每件服装降价1元,那么平均每天就可多售出2件.(1)求销售价在每件90元的基础上,每件降价多少元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠?(2)要想平均每天盈利2000元,可能吗?请说明理由.2、如图,抛物线y=2(x-2)2与平行于x轴的直线交于点A,B,抛物线顶点为C,△ABC为等边三角形,求S△ABC;3、已知关于x的一元二次方程有两个相等的实数根,求的值.4、陕西某景区吸引了大量中外游客前来参观,如果游客过多,对进景区的游客健康检查、拥堵等问题会产生不利影响,但也要保证一定的门票收入,因此景区采取了涨浮门票价格的方法来控制旅游人数,在该方法实施过程中发现:每周旅游人数与票价之间存在着如图所示的一次函数关系.在这种情况下,如果要保证每周3000万元的门票收入,那么每周应限定旅游人数是多少万人?门票价格应是多少元?5、在平面直角坐标系中,设二次函数(m是实数).(1)当时,若点在该函数图象上,求n的值.(2)小明说二次函数图象的顶点在直线上,你认为他的说法对吗?为什么?(3)已知点,都在该二次函数图象上,求证:.6、正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.(1)如图①,若点E在上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=AE.请说明理由;(3)如图②,若点E在上.连接DE,CE,已知BC=5,BE=1,求DE及CE的长.-参考答案-一、单选题1、C【解析】【分析】加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可.【详解】解:∵新正方形的边长为x+4,原正方形的边长为4,∴新正方形的面积为(x+4)2,原正方形的面积为16,∴y=(x+4)2-16=x2+8x,故选:C.【考点】本题考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键.2、C【解析】【分析】连接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切线,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【详解】连接OC,如图,∵⊙O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故选:C.【考点】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质.3、D【解析】【分析】先利用直径所对的圆周角是直角得到∠ACB=90°,从而求出∠BAC,再利用同弧所对的圆周角相等即可求出∠BDC.【详解】解:∵C,D是⊙O上直径AB两侧的两点,∴∠ACB=90°,∵∠ABC=25°,∴∠BAC=90°-25°=65°,∴∠BDC=∠BAC=65°,故选:D.【考点】本题考查了圆周角定理的推论,即直径所对的圆周角是90°和同弧或等弧所对的圆周角相等,解决本题的关键是牢记相关概念与推论,本题蕴含了属性结合的思想方法.4、D【解析】【分析】先把x2+2x=5(x﹣2)化简,然后根据一元二次方程的一般形式即可得到a、b、c的值.【详解】解:x2+2x=5(x﹣2),x2+2x=5x﹣10,x2+2x﹣5x+10=0,x2﹣3x+10=0,则a=1,b=﹣3,c=10,故选:D.【考点】此题主要考查了一元二次方程化为一般形式,熟练掌握一元二次方程的一般形式是解题的关键.5、B【解析】【分析】根据一元二次方程的根与系数的关系可得x1+x2=3,x1x2=1,再把代数式x12+x22化为,再整体代入求值即可.【详解】解:根据根与系数的关系得x1+x2=3,x1x2=1,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×1=7.故选:B.【考点】本题考查的是一元二次方程的根与系数的关系,熟练的利用根与系数的关系求解代数式的值是解本题的关键.二、多选题1、AC【解析】【分析】根据中心对称与轴对称的概念,即可求解.【详解】解:A、是轴对称图形,故本选项符合题意;B、是中心对称图形,属于图形的旋转,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、既是轴对称图形,也是中心对称图形,包含图形的旋转,故本选项不符合题意;故选:AC.【考点】本题主要考查了中心对称与轴对称的概念,熟练掌握轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合是解题的关键.2、ACD【解析】【分析】根据图象左移加,右移减,图象上移加,下移减,可得答案.【详解】解:A、y=x2−1,先向上平移1个单位得到y=x2,再向上平移1个单位可以得到y=x2+1,故A符合题意;B、y=x2+6x+5=(x+3)2−4,右移3个单位,再上移5得到y=x2+1,故B不符合题意;C、y=x2+4x+4=(x+2)2,先向右平移2个单位得到y=(x+2−2)2=x2,再向上平移1个单位得到y=x2+1,故C符合题意;D、y=x2+8x+17=(x+4)2+1,先向右平移2个单位得到y=(x+4−2)2+1,再向右平移1个单位得到y=(x+4−2-2)2+1=x2+1,故D符合题意.故选:ACD.【考点】本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,注意由目标函数图象到原函数图象方向正好相反.3、BD【解析】【分析】过B作直径,连接AC交AO与E,再根据两种情况求出BD的两个长度,再求得OD,OE,DE的值连接OD,根据勾股定理得到结论.【详解】∵点B为的中点∴BD⊥AC①如图∵点D恰再该圆直径的三等分点上∴BD==2∴OD=OB-BD=1∵四边形ABCD是菱形∴DE==1∴OE=2连接OC∵CE==∴边CD=②如下图BD==4同理可得,OD=1,OE=1,DE=2,连接OC,∵CE==∴CD=故选:BD【考点】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确地作出图形是解题的关键.4、AC【解析】【分析】先解出一元二次方程,再根据勾股定理计算即可;【详解】,,∴或,当2、3是直角边时,斜边;∵,∴3可以是三角形斜边;故选AC.【考点】本题主要考查了一元二次方程的求解、勾股定理,准确计算是解题的关键.5、AD【解析】【分析】根据圆的有关概念及性质,对选项逐个判断即可.【详解】解:A.等弧是能够完全重合的弧,因此等弧所对的圆心角相等,正确,符合题意;B.经过不在同一直线上的三点可以作一个圆,故原命题错误,不符合题意;C.平分弦(不是直径)的直径垂直于这条弦,故原命题错误,不符合题意;D.圆的内接平行四边形是矩形,正确,符合题意,正确的有A、D,故答案为:A、D.【考点】此题考查了圆的有关概念及性质,解题的关键是熟练掌握圆的相关概念以及性质.三、填空题1、﹣3≤x≤且x≠.【解析】【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0.【详解】解:若代数式有意义,必有,解①得解②移项得两边平方得整理得解得③∴解集为﹣3≤x≤且x≠.故答案为:﹣3≤x≤且x≠.【考点】本题考查了二次根式的概念:式子(a≥0)叫二次根式,(a≥0)是一个非负数.注意:二次根式中的被开方数必须是非负数,否则二次根式无意义;当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.2、-3【解析】【分析】由题意可把x=2代入一元二次方程进行求解a的值,然后再进行求解方程的另一个根.【详解】解:由题意把x=2代入一元二次方程得:,解得:,∴原方程为,解方程得:,∴方程的另一个根为-3;故答案为-3.【考点】本题主要考查一元二次方程的解及其解法,熟练掌握一元二次方程的解及其解法是解题的关键.3、17【解析】【分析】根据题意可知,当直线经过点(1,12)时,直线y=kx-3与该图象有公共点;当直线与抛物线只有一个交点时,(x-5)2+8=kx-3,可得出k的最大值是15,最小值是2,即可得它们的和为17.【详解】解:当直线经过点(1,12)时,12=k-3,解得k=15;当直线与抛物线只有一个交点时,(x-5)2+8=kx-3,整理得x2-(10+k)x+36=0,∴10+k=±12,解得k=2或k=-22(舍去),∴k的最大值是15,最小值是2,∴k的最大值与最小值的和为15+2=17.故答案为:17.【考点】本题考查分段函数的图象与性质,一次函数图象上点的坐标特征,结合图象求出k的最大值和最小值是解题的关键.4、【解析】【分析】根据关于原点对称的点的坐标特征:关于原点对称的点,横纵坐标都互为相反数,进行求解即可.【详解】解:∵点A(m,5)与点B(-4,n)关于原点成中心对称,∴m=4,n=-5,∴m+n=-5+4=-1,故答案为:-1.【考点】本题主要考查了关于原点对称点的坐标特征,代数式求值,熟知关于原点对称的点的坐标特征是解题的关键.5、或【解析】【分析】设门的宽为x尺,则门的高为(x+6)尺,利用勾股定理,即可得出关于x的一元二次方程,此题得解.【详解】解:设门的宽为x尺,则门的高为(x+6)尺,依题意得:即或.故答案为:或.【考点】本题考查了由实际问题抽象出一元二次方程以及勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.四、解答题1、(1)每件降价20元(2)不可能,理由见解析【解析】【分析】(1)根据题意列出方程,即每件服装的利润×销售量=总盈利,再求解,把不符合题意的舍去;(2)根据题意列出方程进行求解即可.(1)解:设每件服装降价x元.由题意得:(90-x-50)(20+2x)=1200,解得:x1=20,x2=10,为使顾客得到较多的实惠,应取x=20;答:每件降价20元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠;(2)解:不可能,理由如下:依题意得:(90-x-50)(20+2x)=2000,整理得:x2-30x+600=0,Δ=(-30)2-4×600=900-2400=-1500<0,则原方程无实数解.则不可能每天盈利2000元.【考点】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程.2、【解析】【分析】过B作BP⊥x轴交于点P,连接AC,BC,由抛物线y=得C(2,0),于是得到对称轴为直线x=2,设B(m,n),根据△ABC是等边三角形,得到BC=AB=2m-4,∠BCP=∠ABC=60°,求出PB=PC=(m-2),由于PB=n=,于是得到(m-2)=,解方程得到m的值,然后根据三角形的面积公式即可得到结果.【详解】解:过B作BP⊥x轴交于点P,连接AC,BC,由抛物线y=得C(2,0),∴对称轴为直线x=2,设B(m,n),∴CP=m-2,∵AB∥x轴,∴AB=2m-4,∵△ABC是等边三角形,∴BC=AB=2m-4,∠BCP=∠ABC=60°,∴PB=PC=(m-2),∵PB=n=,∴(m-2)=,解得m=,m=2(不合题意,舍去),∴AB=,BP=,∴S△ABC=.【考点】本题考查二次函数的性质.3、4【解析】【分析】先根据一元二次方程根的判别式可得,从而可得,再代入计算即可得.【详解】解:∵关于的一元二次方程有两个相等的实数根,∴此方程根的判别式,即,则,,,.【考点】本题考查了一元二次方程根的判别式、代数式求值,熟练掌握一元二次方程根的判别式是解题关键.4、10万人、300元【解析】【分析】设门票价格为x元,每周旅游人数为y万人,根据题中的图中信息,利用待定系数法即可求解出每周旅游人数y与票价x之间存在一次函数关系,再根据题意列出一元二次方程即可求解.【详解】解:设门票价格为x元,每周旅游人数为y万人,∵每周旅游人数与票价之间存在一次函数关系,∴设一次函数为y=kx+b,则有,解得:,∴.由题意得:,解得=100,=300.当x=100时,y=30;当x=300时,y=10.∵既要控制人数又要保证收入,∴每周应限定旅游人数是10万人,门票价格应是300元.【考点】本题主要考查一次函数与一元二次方程的实际应用,根据等量关系,列出一次函数解析式和方程,是解题的关键.5、(1)-7(2)对,理由见解析(3)见解析【解析】【分析】(1)把m=2,点A(8,n)代入解析式即可求解;(2)由抛物线解析式,得顶点是,把x=2m代入,求出y值与3-m比较,若相等则即可判断小明说法正确,否则说法错误;(3)由点P(a+1,c),Q(4m-5+a,c)的纵坐标相同,即可求得对称轴为直线x==a+2m-2,即可得出a+2m-2=2m,求得a=2,得到P(3,c),代入解析式即可得到==,根据二次函数的性质即可证得结论.(1)解:当m=2时,∵A(8,n)在函数图象上,∴(2)解:由题意得,顶点是当x=2m时,∴顶点在直线上(3)证明:∵P(a+1,c),Q(4m-5+a,c)都在二次函数的图象上∴对称轴是直线∴a+2m-2=2m,∴a=2,∴P(3,c),把P(3,c)代入抛物线解析式,得∴==,∵-2<0,∴c有最大值为,∴c≤.【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.6、(1)证明见解析;(2)理由见解析;(3)DE=7,CE=【解析】【分析】(1)根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球化的反垄断监管趋势
- 2025年全球海洋酸化对珊瑚礁生态的影响
- 抚顺小学语文试卷及答案
- 2025电梯安装工程承包合同
- 2025年自动检测生产线项目调研分析报告
- 中国丁苯胶乳项目商业计划书
- 某著名咨询公司香雪制药市场调研报告
- 卡板建设项目可行性研究报告
- 2025年劳动合同执行及管理规范
- 老旧小区屋面防水维修施工方案
- 2025年贵州磷化(集团)有限责任公司校园招聘370人笔试参考题库附带答案详解
- 2025贵州盘州市普古乡卫生院招聘村医考试参考试题及答案解析
- 2025年二手车行业二手车电商平台发展与市场前景研究报告
- 骨盆矫正课件
- 智慧养老APP创新创业项目商业计划书
- 2025至2030中国航空运动行业产业运行态势及投资规划深度研究报告
- (正式版)DB33∕T 1431-2025 《公路固化土路基施工规范》
- 社会科学研究方法 课件 第7-12章 调查研究-撰写研究报告
- 结直肠癌课件
- 消毒技术中级考试题库及答案
- 盆腔包虫CT课件
评论
0/150
提交评论