2022湖北省潜江市中考数学复习提分资料及参考答案详解(基础题)_第1页
2022湖北省潜江市中考数学复习提分资料及参考答案详解(基础题)_第2页
2022湖北省潜江市中考数学复习提分资料及参考答案详解(基础题)_第3页
2022湖北省潜江市中考数学复习提分资料及参考答案详解(基础题)_第4页
2022湖北省潜江市中考数学复习提分资料及参考答案详解(基础题)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省潜江市中考数学复习提分资料考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、把7个同样大小的正方体形状的积木堆放在桌子上,从正面和左面看到的形状图都是如图所示的同样的图形,则其从上面看到的形状图不可能是()A. B. C. D.2、二次函数的图像如图所示,现有以下结论:(1):(2);(3),(4);(5);其中正确的结论有(

)A.2个 B.3个 C.4个 D.5个.3、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4米 B.5米 C.2米 D.7米4、在一个不透明的口袋中装有3张完全相同的卡片,卡片上面分别写有数字,0,2,从中随机抽出两张不同卡片,则下列判断正确的是()A.数字之和是0的概率为0 B.数字之和是正数的概率为C.卡片上面的数字之和是负数的概率为 D.数字之和分别是负数、0、正数的概率相同5、下列判断正确的个数有()①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④弧分优弧和劣弧;⑤同一条弦所对的两条弧一定是等弧.A.1个 B.2个 C.3个 D.4个二、多选题(5小题,每小题3分,共计15分)1、已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论正确的有(

)A.A、B关于x轴对称; B.A、B关于y轴对称;C.A、B关于原点对称; D.若A、B之间的距离为42、如图在四边形中,,,,为的中点,以点为圆心、长为半径作圆,恰好使得点在圆上,连接,若,则下列说法中正确的是(

)A.是劣弧的中点 B.是圆的切线C. D.3、如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论中正确的结论是()A.△BO′A可以由△BOC绕点B逆时针旋转60°得到B.点O与O′的距离为4C.∠AOB=150°D.S四边形AOBO′=6+3E.S△AOC+S△AOB=6+4、如图,AB为⊙O直径,弦CD⊥AB于E,则下面结论中正确的是(

)A.CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.OE=BE5、已知二次函数y=x2-4x+a,下列说法正确的是()A.当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≥-4C.当a=3时,不等式x2-4x+a<0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如果点与点B关于原点对称,那么点B的坐标是______.2、写出一个一元二次方程,使它有两个不相等的实数根______.3、抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是_____.4、如图,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),B(1,0),与y轴交于点C.下列结论:①abc>0;②3a﹣c=0;③当x<0时,y随x的增大而增大;④对于任意实数m,总有a﹣b≥am2﹣bm.其中正确的是_____(填写序号).5、如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=110°,则的长为__.四、简答题(2小题,每小题10分,共计20分)1、已知关于的二次函数.(1)求证:不论为何实数,该二次函数的图象与轴总有两个公共点;(2)若,两点在该二次函数的图象上,直接写出与的大小关系;(3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值.2、2022年冬奥会在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件).(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?五、解答题(4小题,每小题10分,共计40分)1、如图,四边形ABCD内接于⊙O,AC是直径,点C是劣弧BD的中点.(1)求证:.(2)若,,求BD.2、已知线段AB,用平移、旋转、轴对称画出一个以AB为一边,一个内角是30°的菱形.(不写画法,保留作图痕迹).3、如图,已知为的直径,切于点C,交的延长线于点D,且.(1)求的大小;(2)若,求的长.4、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于B、C两点,点B的坐标为,点D在上,且,求OA的半径和圆心A的坐标.元元的做法如下,请你帮忙补全解题过程:解:如图2,连接BC.作AELOB于E、AF⊥OC于F.∴、(依据是①)∵,∴(依据是②).∵,.∴BC是的直径(依据是③).∴∵,∴A的坐标为(④)的半径为⑤-参考答案-一、单选题1、C【分析】利用俯视图,写出符合题意的小正方体的个数,即可判断.【详解】A、当7个小正方体如图分布时,符合题意,本选项不符合题意.B、当7个小正方体如图分布时,符合题意,本选项不符合题意.C、没有符合题意的几何图形,本选项符合题意.D、当7个小正方体如图分布时,符合题意,本选项不符合题意.故选:C.【点睛】此题考查了从不同的方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.2、C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;(2)∵a<0,b>0,c>0,∴abc<0,故命题正确;(3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;(4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;故选C.【考点】本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.3、B【解析】【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+,∴a=-,∴大孔所在抛物线解析式为y=-x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为-7,∴点E坐标为(-7,-),

∴-=m(x﹣b)2,∴x1=+b,x2=-+b,∴MN=4,∴|+b-(-+b)|=4∴m=-,∴顶点为A的小孔所在抛物线的解析式为y=-(x﹣b)2,∵大孔水面宽度为20米,∴当x=-10时,y=-,∴-=-(x﹣b)2,∴x1=+b,x2=-+b,∴单个小孔的水面宽度=|(+b)-(-+b)|=5(米),故选:B.【考点】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.4、A【分析】列树状图,得到共有6种等可能的情况,和为正数的有4种情况,和为负数的有2种情况,依次判断即可.【详解】解:列树状图如下:共有6种等可能的情况,和为正数的有4种情况,和为负数的有2种情况,A.数字之和是0的概率为0,故该项符合题意;B.数字之和是正数的概率为,故该项不符合题意;C.卡片上面的数字之和是负数的概率为,故该项不符合题意;D.数字之和分别是负数、0、正数的概率不相同,故该项不符合题意;故选:A.【点睛】此题考查了列树状图求事件的概率,概率的计算公式,正确列出树状图解答是解题的关键.5、B【详解】①直径是圆中最大的弦;故①正确,②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确③半径相等的两个圆是等圆;故③正确④弧分优弧、劣弧和半圆,故④不正确⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.综上所述,正确的有①③故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.二、多选题1、BD【解析】【分析】根据点坐标关于原点对称、轴对称的特点,求出对应点坐标即可.【详解】点A(-2,3)关于x轴对称的点为(-2,-3),故A错误点A(-2,3)关于y轴对称的点为(2,3),故B正确点A(-2,3)关于原点对称的点为(2,-3),故C错误点A、点B的纵坐标相同,故A、B之间的距离为,故D正确故选BD【考点】本题考查了点坐标关于x,y轴对称,关于原点中心对称的特点,以及两点间距离公式,熟悉对应知识点是解决本题的关键.2、ABC【解析】【分析】直接利用圆周角定理以及结合圆心角、弧、弦的关系、切线的判定方法、平行线的判定方法、四边形内角和分别分析得出答案.【详解】解:A.∵∠BAD=25°,∠EAD=25°,∴∠DAB=∠EAD∴,故此选项正确;B.∵∠BAD=25°,OA=OD,∴∠ADO=∠BAD=25°∵∠ADC=115°,∴∠ODC=∠ADC-∠ADC=115°-25°=90°,∴CD是⊙O的切线,故此选项正确;C.∵∠EAD=∠ADO=25°∴AE∥DO,故此选项正确;D.∵,,,∴∠OBC=360°-∠DAB-∠ADC-∠C=360°-25°-115°-90°=130°,故此选项错误.故选择ABC.【考点】此题主要考查了切线的判定以及圆周角与弧的关系、四边形内角和、平行线的判定方法等知识,正确掌握相关判定方法是解题关键.3、ABCE【解析】【分析】证明可判断证明是等边三角形,可判断利用是等边三角形,证明可判断由是等边三角形,可得四边形的面积,可判断如图,将绕点逆时针旋转与重合,对应,同理可得:是边长为的等边三角形,是边长为的直角三角形,从而可判断【详解】解:由题意得:为等边三角形,△BO′A可以由△BOC绕点B逆时针旋转60°得到,故符合题意;如图,连接,由是等边三角形,则点O与O′的距离为4,故符合题意;故符合题意;如图,过作于是等边三角形,S四边形AOBO′=故不符合题意;如图,将绕点逆时针旋转与重合,对应,同理可得:是边长为的等边三角形,是边长为的直角三角形,同理可得:故符合题意;故选:【考点】本题考查的是等边三角形的判定与性质,旋转的性质,勾股定理与勾股定理的逆定理的应用,全等三角形的判定与性质,熟练的做出正确的辅助线是解题的关键.4、ABC【解析】【分析】根据垂径定理知,垂直于弦的直径平分弦,并且平分线所对的两条弧,即可判断A选项、B选项正确,由圆周角定理知,在同圆或等圆中,同弧所对的圆周角相等,可判断C选项正确,题目中并没有提到E是OB中点,所以不能证明OE=BE.【详解】A.AB为⊙O直径,弦CD⊥AB于E,由垂径定理得:CE=DE,A选项正确;B.由垂径定理得:,B选项正确;C.,由圆周角定理得:∠BAC=∠BAD,C选项正确;D.E不一定是OB中点,所以不能证明OE=BE,D错误.故选:ABC.【考点】本题考查垂径定理和圆周角定理,熟知垂直于弦的直径平分弦,并且平分线所对的两条弧是解题的关键.5、ACD【解析】【分析】A、此函数在对称轴的左边是随着x的增大而减小,在右边是随x增大而增大,据此作答;B、和x轴有交点,就说明△≥0,易求a的取值;C、解一元二次不等式即可;D、根据左加右减,上加下减作答即可.【详解】解:∵y=x2−4x+a,∴对称轴:直线x=2,A、当x<1时,y随x的增大而减小,故该选项正确;B、当Δ=b2−4ac=16−4a≥0,即a≤4时,二次函数和x轴有交点,该选项错误;C、当a=3时,则不等式x2−4x+3<0,即(x-3)(x-1)<0,∴不等式的解集是1<x<3,故该选项正确;D、y=x2−4x+a配方后是y=(x−2)2+a−4,向上平移1个单位,再向左平移3个单位后,函数解析式是y=(x-1)2+a−3,把(1,−2)代入函数解析式,易求a=−3,故该选项正确.故选:ACD.【考点】本题考查了二次函数的性质,解题的关键是掌握有关二次函数的增减性、与x轴交点的条件、与一元二次不等式的关系、上下左右平移的规律.三、填空题1、【分析】关于原点对称的点坐标特征为:横坐标、纵坐标都互为相反数;进而求出点B坐标.【详解】解:由题意知点B横坐标为;纵坐标为;故答案为:.【点睛】本题考查了关于原点对称的点的坐标知识.解题的关键在于熟练记忆关于原点对称的点坐标中相对应的坐标互为相反数.2、x2+x﹣1=0(答案不唯一)【解析】【分析】这是一道开放自主题,只要写出的方程的Δ>0就可以了.【详解】解:比如a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=1+4=5>0,∴方程为x2+x﹣1=0.故答案为:x2+x﹣1=0(答案不唯一)【考点】本题考查了一元二次方程根的判别式,掌握“根的判别式大于0,方程有两个不相等的实数根”是解题的关键.3、﹣3<x<1【解析】【分析】根据抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.【详解】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为(﹣3,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.【考点】本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键.4、①④##④①【解析】【分析】根据抛物线的对称轴,开口方向,与轴的交点位置,即可判断①,根据二次函数y=ax2+bx+c的图象经过点A(﹣3,0),B(1,0),即可求得对称轴,以及当时,,进而可以判断②③,根据顶点求得函数的最大值,即可判断④.【详解】解:抛物线开口向下,,对称轴,,抛物线与轴交于正半轴,,,故①正确,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),B(1,0),对称轴为,则,当,,,故②不正确,由函数图象以及对称轴为,可知,当时,随的增大而增大,故③不正确,对称轴为,则当时,取得最大值,对于任意实数m,总有,即,故④正确.故答案为:①④.【考点】本题考查了二次函数图象的性质,数形结合是解题的关键.5、##【分析】连接OA、OC,先求出∠ABC的度数,然后得到∠AOC,再由弧长公式即可求出答案.【详解】解:连接OA、OC,如图,∵四边形ABCD是⊙O的内接四边形,∠D=110°,∴,∴,∴;故答案为:.【点睛】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式.四、简答题1、(1)见解析(2)(3)的值为1或-5【解析】【分析】(1)计算判别式的值,得到,即可判定;(2)计算二次函数的对称轴为:直线,利用当抛物线开口向上时,谁离对称轴远谁大判断即可;(3)先得到抛物线沿y轴翻折后的函数关系式,再利用对称轴与取值范围的位置分类讨论即可.(1)证明:令,则∴∴不论为何实数,方程有两个不相等的实数根∴无论为何实数,该二次函数的图象与轴总有两个公共点(2)解:二次函数的对称轴为:直线∵,抛物线开口向上∴抛物线上的点离对称轴越远对应的函数值越大∵∴M点到对称轴的距离为:1N点到对称轴的距离为:2∴(3)解:∵抛物线∴沿轴翻折后的函数解析式为∴该抛物线的对称轴为直线①若,即,则当时,有最小值∴解得,∵∴②若,即,则当时,有最小值-1不合题意,舍去③若,,则当时,有最小值∴解得,∵∴综上,的值为1或-5【考点】本题考查了抛物线与x轴的交点以及二次函数的最值问题,利用一元二次方程根的判别式判断抛物线与x轴的交点情况;熟练掌握二次函数的最值情况、根据对称轴与取值范围的位置关系来确定二次函数的最值是解本题的关键.2、(1);(2)当销售单价为56元时,每天所获得的利润最大,最大利润为1152元【解析】【分析】(1)根据“销售单价每降低1元,则每天可多售出2件”列函数关系式;(2)根据总利润=单件利润×销售量列出函数关系式,然后利用二次函数的性质分析其最值.【详解】解:(1)由题意可得:,整理,得:,每天的销售量y(件)与销售单价x(元)之间的函数关系式为;(2)设销售所得利润为w,由题意可得:,整理,得:,,当时,w取最大值为1152,当销售单价为56元时,销售这款文化衫每天所获得的利润最大,最大利润为1152元.【考点】此题考查二次函数的应用——销售问题,涉及运算能力及一次函数应用,熟练掌握相关知识是解题的关键.五

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论