




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省临安市中考数学常考点试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为()A. B. C. D.2、若m,n是方程x2-x-2022=0的两个根,则代数式(m2-2m-2022)(-n2+2n+2022)的值为(
)A.2023 B.2022 C.2021 D.20203、如图,该几何体的左视图是()A. B. C. D.4、有6张扑克牌(如图),背面朝上,从中任抽一张,则抽到方块牌的概率是()A. B. C. D.5、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积()A.不变 B.面积扩大为原来的3倍C.面积扩大为原来的9倍 D.面积缩小为原来的二、多选题(5小题,每小题3分,共计15分)1、下列各数不是方程解的是(
)A.6 B.2 C.4 D.02、如图,在中,,,点D,E分别为,上的点,且.将绕点A逆时针旋转至点B,A,E在同一条直线上,连接,.下列结论正确的是(
)A. B. C. D.旋转角为3、如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转a度,得到△A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:其中正确的有(
).A.∠CDF=a度B.A1E=CFC.DF=FCD.BE=BF4、下面的图形中,绕着一个点旋转120°后,能与原来的位置重合的是(
)A. B. C. D.5、下列命题正确的是(
)A.菱形既是中心对称图形又是轴对称图形B.的算术平方根是5C.如果一个多边形的各个内角都等于108°,则这个多边形是正五边形D.如果方程有实数根,则实数第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、在平面直角坐标系中,将点A先向右平移4个单位,再向下平移6个单位得到点B,如果点A和点B关于原点对称,那么点A的坐标是____________.2、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为______.3、如图,在中,,,则图中阴影部分的面积是_________.(结果保留)4、一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是_____.5、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).四、简答题(2小题,每小题10分,共计20分)1、计算:2、如图,在平面直角坐标系中,直线与轴、轴分别交于、两点,抛物线经过、两点;(1)求抛物线的解析式;(2)点为轴上一点,点为直线上一点,过作交轴于点,当四边形为菱形时,请直接写出点坐标;(3)在(2)的条件下,且点在线段上时,将抛物线向上平移个单位,平移后的抛物线与直线交于点(点在第二象限),点为轴上一点,若,且符合条件的点恰好有2个,求的取值范围.五、解答题(4小题,每小题10分,共计40分)1、某商店如果将进价8元的商品按每件10元出售,那么每天可销售200件,现采用提高售价,减少进货量的方法增加利润,如果这种商品的售价每涨1元,那么每天的进货量就会减少20件,要想每天获得640元的利润,则每件商品的售价定为多少元最为合适?2、如图1,O为直线DE上一点,过点O在直线DE上方作射线OC,∠EOC=130°.将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕点O按每秒5°的速度逆时针旋转一周,设旋转时间为t秒.(1)如图2,当t=4时,∠AOC=,∠BOE=,∠BOE﹣∠AOC=;(2)当三角板旋转至边AB与射线OE相交时(如图3),试猜想∠AOC与∠BOE的数量关系,并说明理由;(3)在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出t的取值,若不存在,请说明理由.3、如图①已知抛物线的图象与轴交于、两点(在的左侧),与的正半轴交于点,连结;二次函数的对称轴与轴的交点.(1)抛物线的对称轴与轴的交点坐标为,点的坐标为_____(2)若以为圆心的圆与轴和直线都相切,试求出抛物线的解析式:(3)在(2)的条件下,如图②是的正半轴上一点,过点作轴的平行线,与直线交于点与抛物线交于点,连结,将沿翻折,的对应点为’,在图②中探究:是否存在点,使得’恰好落在轴上?若存在,请求出的坐标:若不存在,请说明理由.4、小敏与小霞两位同学解方程的过程如下框:小敏:两边同除以,得,则.小霞:移项,得,提取公因式,得.则或,解得,.你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.-参考答案-一、单选题1、B【分析】直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案.【详解】解:由题意可得:小立方体一共有27个,恰有三个面被涂色的为棱长为3的正方体顶点处的8个小正方体;故取得的小正方体恰有三个面被涂色.的概率为.故选:B.【点睛】此题主要考查了概率公式的应用,正确得出三个面被涂色.小立方体的个数是解题关键.2、B【解析】【详解】解:∵m、n是方程x2-x-2022=0的两个根,∴m2-m-2022=0,n2-n-2022=0,mn=-2022,∴m2-m=2022,n2-n=2022,∴(m2-2m-2022)(-n2+2n+2022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故选:B.【考点】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此题的关键.3、C【分析】根据从左边看得到的图形是左视图解答即可.【详解】解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C正确.故选C.【点睛】本题主要考查了简单组合体的三视图,掌握三视图的定义成为解答本题的关键.4、A【解析】【分析】m表示事件A发生可能出现的次数,n表示一次试验所有等可能出现的次数;代入公式即可求得概率.【详解】解:观察图形知:6张扑克中有2张方块,所以从中任抽一张,则抽到方块的概率故选A.【考点】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.5、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.【详解】设原来扇形的半径为r,圆心角为n,∴原来扇形的面积为,∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的,∴变化后的扇形的半径为3r,圆心角为,∴变化后的扇形的面积为,∴扇形的面积不变.故选:A.【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.二、多选题1、ACD【解析】【分析】分别把四个选项中的数代入方程,看方程两边是否相等即可求解.【详解】解:A、将6代入得:,故6不是方程解,符合题意;B、将2代入得:,故2是方程解,不符合题意;C、将4代入得:,故4不是方程解,符合题意;D、将0代入得:,故0不是方程解,符合题意;故选:ACD.【考点】此题考查了一元二次方程解得含义,解题的关键是熟练掌握一元二次方程解得含义.2、ABC【解析】【分析】由AB=AC,∠B=30°,得出∠B=∠C=30°,∠BAC=120°,得出将△ADE绕点A逆时针旋转至点B、A、E在同一条直线上,可得旋转角为60°,故D错误;由DE∥BC,易证AD=AE,得出BD=EC,故C正确;BE=AE+AB=AD+AC,故B正确;证明∠DAC=∠EAC,由AD=AE,得出DE⊥AC,故A正确;即可得出结果.【详解】解:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∠BAC=120°,∴将△ADE绕点A逆时针旋转至点B、A、E在同一条直线上,则旋转角为:180°120°=60°,故D错误;∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠ADE=∠AED,∴AD=AE,∴BD=EC,故C正确;BE=AE+AB=AD+AC,故B正确;∵∠BAC=∠DAE=120°,∴∠EAC=180°-∠BAC=180°-120°=60°,∠DAC=120°-∠EAC=120°-60°=60°,∴∠DAC=∠EAC,∵AD=AE,∴DE⊥AC,故A正确;故选:ABC.【考点】本题考查了旋转的性质、等腰三角形的判定与性质、平行线的性质等知识;熟练掌握旋转的性质与等腰三角形的性质是解题的关键.3、ABD【解析】【分析】根据等腰三角形的性质由BA=BC得∠A=∠C,再根据旋转的性质得BA=BA1=BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,而根据对顶角相等得∠BFC1=∠DFC,于是可根据三角形内角和定理得到∠CDF=∠FBC1=α;利用“ASA”证明△BAE≌△BC1F,则BE=BF,所以A1E=CF;由于∠CDF=α,则只有当旋转角等于∠C时才有DF=FC.【详解】解:∵BA=BC,∴∠A=∠C,∵△ABC绕点B顺时针旋转α度,得到△A1BC1,∴BA=BA1,BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,∵∠BFC1=∠DFC,∴∠CDF=∠FBC1=α,所以A正确,∴BA=BA1=BC=BC1,在△BAE和△BC1F中,∴△BAE≌△BC1F(ASA),∴BE=BF,故D正确而BA1=BC,∴A1E=CF,所以B正确;∵∠CDF=α,∴当旋转角等于∠C时,DF=FC,所以C错误;故选ABD.【考点】本题主要考查了旋转的性质,全等三角形的性质与判定,等腰三角形的性质,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.4、AB【解析】【分析】根据旋转的性质对题中图形进行分析即可.【详解】解:A、旋转任意角度都与原图形重合,故符合题意;B、旋转最小的度数是120度与原图形重合,故符合题意;C、旋转最小的度数是72度(72度的整倍数都可以)与原图形重合,则旋转120度不能与原图形重合,故不符合题意;D、旋转最小的度数是90度(90度的整倍数都可以)与原图形重合,则旋转120度不能与原图形重合,故不符合题意.故选AB.【考点】本题主要考查了图形的旋转,理解旋转的定义是解题的关键.5、AD【解析】【分析】利用菱形的对称性、算术平方根的定义、多边形的内角和、一元二次方程根的判别式等知识分别判断后即可确定正确的选项.【详解】解:A、菱形既是中心对称图形又是轴对称图形,故命题正确,符合题意;B、的算术平方根是,故命题错误,不符合题意;C、若一个多边形的各内角都等于108°,各边也相等,则它是正五边形,故命题错误,不符合题意;D、对于方程,当a=0时,方程,变为2x+1=0,有实数根,当a≠0时,时,即,方程有实数根,综上所述,方程有实数根,则实数,故命题正确,符合题意.故选:AD.【考点】考查了命题与定理的知识,解题的关键是了解算术平方根的定义、菱形的对称性、多边形的内角和、一元二次方程根的判别式等知识,难度不大.三、填空题1、【解析】【分析】先按题目要求对A、B点进行平移,再根据原点对称的特征:横纵坐标互为相反数进行列方程,求解.【详解】设,向右平移4个单位,再向下平移6个单位得到∵A、B关于原点对称,∴,,解得,,∴故答案为:【考点】本题考查点的平移和原点对称的性质,掌握这些是解题关键.2、##【分析】如图所示,取D(-2,0),连接BD,连接CD与圆C交于点,先求出A点坐标,从而可证OM是△ABD的中位线,得到,则当BD最小时,OM也最小,即当B运动到时,BD有最小值,由此求解即可.【详解】解:如图所示,取D(-2,0),连接BD,连接CD与圆C交于点∵点C的坐标为(2,2),圆C与x轴相切于点A,∴点A的坐标为(2,0),∴OA=OD=2,即O是AD的中点,又∵M是AB的中点,∴OM是△ABD的中位线,∴,∴当BD最小时,OM也最小,∴当B运动到时,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案为:.【点睛】本题主要考查了坐标与图形,一点到圆上一点的距离得到最小值,两点距离公式,三角形中位线定理,把求出OM的最小值转换成求BD的最小值是解题的关键.3、【解析】【分析】由,根据圆周角定理得出,根据S阴影=S扇形AOB-可得出结论.【详解】解:∵,∴,∴S阴影=S扇形AOB-,故答案为:.【考点】本题主要考查圆周角定理、扇形的面积计算,根据题意求得三角形与扇形的面积是解答此题的关键.4、60π【解析】【分析】利用圆锥的侧面积公式:,求出圆锥的母线即可解决问题.【详解】解:圆锥的母线,∴圆锥的侧面积=π×10×6=60π,故答案为:60π.【考点】本题考查了圆锥的侧面积,勾股定理等知识,解题的关键是记住圆锥的侧面积公式.5、20【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD‘=70°,然后利用互余计算出∠DAD′,从而得到α的值.【详解】∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,即α=20°.故答案为20.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.四、简答题1、【解析】【分析】首先代入特殊角的三角函数值,再进行二次根式的运算即可求得.【详解】解:.【考点】本题考查了含特殊角的三角形函数值的混合运算,熟练掌握特殊角的三角形函数值及二次根式的运算是解决本题的关键.2、(1);(2);;(3)【解析】【分析】(1)由题意易得,,然后代入抛物线解析式进行求解即可;(2)由题意可画出图象,设点,然后求出直线AB的解析式为,则可设点,点,进而根据中点坐标公式及两点距离公式可进行求解;(3)过作轴交于,由(2)可得:,,则有,设,,进而可得,则,然后可得,则有,最后根据一元二次方程根的判别式可进行求解.【详解】解:(1)∵直线与轴、轴分别交于、两点,∴,,∵抛物线经过、两点,∴,解得:,∴抛物线的解析式为;(2)由(1)可得,,由题意可得如图所示:设点,直线AB的解析式为,把点A、B代入得:,解得:,∴直线AB的解析式为,设点,点,∵四边形是菱形,∴根据中点坐标公式可得:,即,∴,∵,∴根据两点距离公式可得:,解得:或或(不符合题意,舍去),∴;;(3)过作轴交于,如图所示:由(2)可得:,,∴,设,,∵,∴,∴,,∵,,∴,∴,∴,∴,即,化简得:,当方程有唯一实根时,满足条件的只有一个,∴,化简得:,解得:,(含去)∴,设平移后的抛物线为:,将点坐标代入平移后解析式得:,解得:,.【考点】本题主要考查二次函数的综合及相似三角形的性质与判定,熟练掌握二次函数的综合及相似三角形的性质与判定是解题的关键.五、解答题1、每件商品的售价定为16元最为合适.【解析】【分析】设每件商品的售价定为x元,则每件商品的销售利润为(x-8)元,每天的进货量为200-20(x-10)=(400-20x)件,利用每天销售这种商品的利润=每件的销售利润×日销售量(日进货量),即可得出关于x的一元二次方程,解之即可得出x的值,再结合“现采用提高售价,减少进货量的方法增加利润”,即可得出每件商品的售价定为16元最为合适..【详解】解:设每件商品的售价定为x元,则每件商品的销售利润为(x-8)元,每天的进货量为200-20(x-10)=(400-20x)件,依题意得:(x-8)(400-20x)=640,整理得:x2-28x+192=0,解得:x1=12,x2=16.又∵现采用提高售价,减少进货量的方法增加利润,∴x=16.答:每件商品的售价定为16元最为合适.【考点】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.2、(1)30°,70°,40°;(2)∠AOC-∠BOE=40°,理由见解析;(3)t的取值为5或20或62【分析】(1)先根据已知求出∠DOC、∠BOC,再求出当t=4时的旋转角的度数,再利用角的和与差求解即可;(2)设旋转角为x,用x表示∠AOC和∠BOE,即可得出结论;(3)分①OA为∠DOC的平分线;②OC为∠DOA的平分线;③OD为∠COA的平分线三种情况,利用角平分线定义和旋转性质求出旋转角即可.(1)解:∵∠EOC=130°,∠AOB=∠BOE=90°,∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,当t=4时,旋转角4×5°=20°,∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,∠BOE-∠AOC=70°-30°=40°,故答案为:30°,70°,40°;(2)解:∠AOC-∠BOE=40°,理由为:设旋转角为x,当三角板旋转至边AB与射线OE相交时,∠AOC=x-50°,∠BOE=x-90°,∴∠AOC-∠BOE=(x-50°)-(x-90°)=40°;(3)解:存在,①当OA为∠DOC的平分线时,旋转角5t=∠DOC=25,∴t=5;②当OC为∠DOA的平分线时,旋转角5t=2∠DOC=100,∴t=20;③当OD为∠COA的平分线时,360-5t=∠DOC=50,∴t=62,综上,满足条件的t的取值为5或20或62.【点睛】本题考查角平分线的定义、旋转的性质、角的运算,熟练掌握旋转性质,利用分类讨论思想求解是解答的关键.3、(1);(2);(3)【解析】【分析】(1)由抛物线的对称轴为直线,即可求得点E的坐标;在y=ax2﹣3ax﹣4a(a<0)令y=0可得关于x的方程ax2﹣3ax﹣4a=0,解方程即可求得点A的坐标;(2)如图1,设⊙E与直线BC相切于点D,连接DE,则DE⊥BC,结合(1)可得DE=OE=,EB=,OC=-4a,在Rt△BDE中由勾股定理可得BD=2,这样由tan∠OBC=即可列出关于a的方程,解方程求得a的值即可得到抛物线的解析式;(3)由折叠的性质和MN∥y轴可得∠MCN=∠M′CN=∠MNC,由此可得CM=MN,由点B的坐标为(4,0),点C的坐标为(0,3)可得线段BC=5,直线BC的解析式为y=﹣x+3,由此即可得到M、N的坐标分别为(m,﹣m+3)、(m,﹣m2+m+3),作MF⊥OC于F,这样由sin∠BCO=即可解得CM=m,然后分点N在直线BC的上方和下方两种情况用含
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025南京市城市基础设施建设项目预拌混凝土供应合同
- 高铁桥梁考试题及答案
- 高级气焊工考试题及答案
- 服务营销的考试题及答案
- 飞机高级铆工考试题及答案
- 法学专利考试题目及答案
- 对口考试题及答案17题
- 中国造纸化学品项目投资计划书
- 中国氯化橡胶树脂涂料项目投资计划书
- 电站锅炉考试题型及答案
- 山东省名校考试联盟2026届高三上学期10月阶段性检测数学试卷(含答案)
- 2025年个人电动汽车购买协议
- 无人机测绘课件
- 养老机构销售技巧培训
- 创意笔筒产品设计与制作方案
- 快递员安全寄递培训课件
- 2025公务员考试《常识》高分题库完美版附答案详解
- GB/T 17824.1-2022规模猪场建设
- GB/T 10299-2011绝热材料憎水性试验方法
- 铸造缺陷汇总图课件
- 人教版一年级上册数学期中测试卷(真题汇编)
评论
0/150
提交评论