2024河南省济源市中考数学考试历年机考真题集附完整答案详解【易错题】_第1页
2024河南省济源市中考数学考试历年机考真题集附完整答案详解【易错题】_第2页
2024河南省济源市中考数学考试历年机考真题集附完整答案详解【易错题】_第3页
2024河南省济源市中考数学考试历年机考真题集附完整答案详解【易错题】_第4页
2024河南省济源市中考数学考试历年机考真题集附完整答案详解【易错题】_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省济源市中考数学考试历年机考真题集考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、函数y=ax与y=ax2+a(a≠0)在同一直角坐标系中的大致图象可能是()A. B.C. D.2、2019年女排世界杯于9月在日本举行,中国女排以十一连胜的骄人成绩卫冕冠军,充分展现了团队协作、顽强拼搏的女排精神.如图是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作拋物线,在同一竖直平面内建立如图所示的直角坐标系,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点)距球网的水平距离为2.5米,则排球运动路线的函数表达式为(

)A. B.C. D.3、关于x的一元二次方程根的情况,下列说法正确的是(

)A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定4、把四张扑克牌所摆放的顺序与位置如下,小杨同学选取其中一张扑克牌把他颠倒后在放回原来的位置,那么扑克牌的摆放顺序与位置都没变化,那么小杨同学所选的扑克牌是(

)A. B. C. D.5、如图,五边形是⊙O的内接正五边形,则的度数为(

)A. B. C. D.二、多选题(5小题,每小题3分,共计15分)1、下列命题中不正确的命题有(

)A.方程kx2-x-2=0是一元二次方程 B.x=1与方程x2=1是同解方程C.方程x2=x与方程x=1是同解方程 D.由(x+1)(x-1)=3可得x+1=3或x-1=32、下列关于x的方程没有实数根的是(

)A.x2-x+1=0 B.x2+x+1=0C.(x-1)(x+2)=0 D.(x-1)2+1=03、下列说法正确的是(

)A.圆是轴对称图形,它有无数条对称轴B.圆的半径、弦长的一半、弦上的弦心距能组成一个直角三角形,且圆的半径是此直角三角形的斜边C.弦长相等,则弦所对的弦心距也相等D.垂直于弦的直径平分这条弦,并且平分弦所对的弧4、二次函数y=ax2+bx+c的部分对应值如下表:以下结论正确的是(

)x…﹣3﹣20135…y…70﹣8﹣9﹣57…A.抛物线的顶点坐标为(1,﹣9);B.与y轴的交点坐标为(0,﹣8);C.与x轴的交点坐标为(﹣2,0)和(2,0);D.当x=﹣1时,对应的函数值y为﹣5.5、如图,如果AB为⊙O的直径,弦CD⊥AE,垂足为E,那么下列结论中,正确的是(

)A. B.弧BC=弧BD C.∠BAC=∠BAD D.AC>AD第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、对任意实数a,b,定义一种运算:,若,则x的值为_________.2、已知二次函数,当x=_______时,y取得最小值.3、如图,把△ABC绕点C顺时针旋转25°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A度数为___________.4、关于的方程,k=_____时,方程有实数根.5、已知二次函数,当分别取时,函数值相等,则当取时,函数值为______.四、解答题(6小题,每小题10分,共计60分)1、解一元二次方程(1)(2)2、某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.(1)请直接写出y(个)与x(元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?3、用配方法解方程:.4、解下列方程:(1);(2).5、渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润元与降价元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?6、已知关于x的一元二次方程有两个实数根.(1)求k的取值范围;(2)若,求k的值.-参考答案-一、单选题1、D【解析】【分析】先根据一次函数的性质确定a>0与a<0两种情况分类讨论抛物线的顶点位置即可得出结论.【详解】解:函数y=ax与y=ax2+a(a≠0)A.函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是交y轴正半轴,故选项A不正确;

B.函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是在坐标原点上,故选项B不正确;

C.函数y=ax图形可得a>0,则y=ax2+a(a≠0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴,故选项C不正确;

D.函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴正确,故选项D正确;

故选D.【考点】本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.2、A【解析】【分析】由题意可知点A坐标为(-5,0.5),点B坐标为(0,2.5),点C坐标为(2.5,0),设排球运动路线的函数表达式为:y=ax2+bx+c,将点A、B、C的坐标代入得关于a、b、c的三元一次方程组,解得a、b、c的值,则函数解析式可得,从而问题得解.【详解】解:由题意可知点A坐标为(-5,0.5),点B坐标为(0,2.5),点C坐标为(2.5,0)设排球运动路线的函数解析式为:y=ax2+bx+c,∵排球经过A、B、C三点,,解得:,∴排球运动路线的函数解析式为,故选:A.【考点】本题考查了根据实际问题列二次函数关系式并求得关系式,数形结合并明确二次函数的一般式是解题的关键.3、A【解析】【分析】先计算判别式,再进行配方得到△=(k-1)2+4,然后根据非负数的性质得到△>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.【详解】△=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4,∴(k-1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.【考点】本题考查的是根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.4、D【解析】【分析】根据题意,图形是中心对称图形即可得出答案.【详解】由题意可知,图形是中心对称图形,可得答案为D,故选:D.【考点】本题考查了图形的中心对称的性质,掌握中心图形的性质是解题的关键.5、D【解析】【分析】先根据正五边形的内角和求出每个内角,再根据等边对等角得出∠ABE=∠AEB,然后利用三角形内角和求出∠ABE=即可.【详解】解:∵五边形是⊙O的内接正五边形,∴∠A=∠ABC=,AB=AE,∴∠ABE=∠AEB,∴∠ABE=,∴.故选:D.【考点】本题考查圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算,掌握圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算是解题关键.二、多选题1、ABCD【解析】【分析】根据方程、方程的解的有关定义以及解方程等知识点逐项判断即可.【详解】解:A.方程kx2−x−2=0当k≠0时才是一元二次方程,故错误;B.x=1与方程x2=1不是同解方程,故错误;C.方程x2=x与方程x=1不是同解方程,故错误;D.由(x+1)(x−1)=3可得x=±2,故错误.故选:ABCD.【考点】本题主要考查了一元二次方程的定义、解一元二次方程、同解方程等知识点,掌握解一元二次方程的方法是解答本题的关键.2、ABD【解析】【分析】将选项中的式子转换为一元二次方程一般式,根据根的判别式可得结果.【详解】解:A、x2-x+1=0,,方程没有实数根,此选项符合题意;B、x2+x+1=0,,方程没有实数根,此选项符合题意;C、(x-1)(x+2)=0,,方程有实数根,此选项不符合题意;D、原式整理为:,,方程没有实数根,此选项符合题意;故选:ABD.【考点】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.3、ABD【解析】【分析】根据圆的相关知识和垂径定理进行分析即可.【详解】解:A.圆是轴对称图形,它有无数条对称轴,正确;B.圆的半径、弦长的一半、弦上的弦心距能组成一个直角三角形,且圆的半径是此直角三角形的斜边,正确;C.弦长相等,则弦所对的弦心距也相等,不正确,只有在同圆或等圆中,弦长相等,则弦所对的弦心距也相等;D.垂直于弦的直径平分这条弦,并且平分弦所对的弧,正确.故选:ABD.【考点】本题考查了学生对圆的基本概念和垂径定理的理解,属于基础题.4、ABD【解析】【分析】由已知二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值可知:x=-3与x=

5时,都是y

=

7,由抛物线的对称性可知:抛物线的对称轴为直线x=,根据对称轴和图表可得到顶点坐标,抛物线与y轴的交点坐标,抛物线与x轴的另一个交点坐标以及x=﹣1时,对应的函数值,判断即可.【详解】由已知二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值可知:x=-3与x=

5时,都是y

=

7,由抛物线的对称性可知:抛物线的对称轴为直线x=,抛物线的顶点坐标为(1,-

9),A正确,符合题意;由图表可知抛物线与y轴的交点坐标为(0,-8),B正确,符合题意;抛物线过点(-2,0),根据抛物线的对称性可知:抛物线与x轴的另一个交点坐标为(4,0),C错误,不符合题意;由抛物线的对称性可知:当x=-1时,对应的函数值与x=3时相同,对应的函数值y

=-5,D正确,符合题意,故答案为:ABD.【考点】此题主要考查了二次函数的性质,解题的关键是熟练掌握抛物线的图象和性质,同时会根据图象得到信息.5、ABC【解析】【分析】根据垂径定理逐个判断即可.【详解】解:AB为⊙O的直径,弦CD⊥AB垂足为E,则AB是垂直于弦CD的直径,就满足垂径定理,因而CE=DE,弧BC=弧BD,∠BAC=∠BAD都是正确的.根据条件可以得到AB是CD的垂直平分线,因而AC=AD.所以D是错误的.故选:ABC.【考点】本题主要考查的是对垂径定理的记忆与理解,做题的关键是掌握垂径定理的应用.三、填空题1、2或-3##-3或2【解析】【分析】根据题意得到关于x的一元二次方程,解方程即可.【详解】解:∵,∴,∴,解得或,故答案为:2或-3.【考点】本题主要考查了新定义下的实数运算,解一元二次方程,正确理解题意是解题的关键.2、1【解析】【分析】根据抛物线的顶点坐标和开口方向即可得出答案.【详解】解:,该抛物线的顶点坐标为,且开口方向向上,当时,取得最小值,故答案为:1.【考点】本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法.3、65°【解析】【分析】根据旋转的性质,可得知,从而求得的度数,又因为的对应角是,即可求出的度数.【详解】绕着点时针旋转,得到,的对应角是故答案为:.【考点】此题考查了旋转的性质,解题的关键是正确确定对应角.4、【解析】【分析】由于最高次项前面的系数不确定,所以进行分类讨论:①当时,直接进行求解;②当时,方程为一元二次方程,利用根的判别式,确定k的取值范围,最后综合①②即可求出满足题意的k的取值范围.【详解】解:①当时,方程化为:,解得:,符合题意;②当时,∵方程有实数根,∴,即,解得:,∴且;综上所述,当时,方程有实数根,故答案为:.【考点】题目主要考查方程的解的情况,包括一元一次方程及一元二次方程的求解,分情况讨论方程的解是解题关键.5、2020【解析】【分析】根据二次函数y=2x2+2020,当x分别取x1,x2(x1≠x2)时,函数值相等,可以得到x1和x2的关系,从而可以得到2x1+2x2的值,进而可以求得当x取2x1+2x2时,函数的值.【详解】解:∵二次函数y=2x2+2020,当x分别取x1,x2(x1≠x2)时,函数值相等,∴2x12+2020=2x22+2020,∴x1=-x2,∴2x1+2x2=2(x1+x2)=0,∴当x=2x1+2x2时,y=2×0+2020=0+2020=2020,故答案为:2020.【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.四、解答题1、(1)x1=2,x2=-2;(2)x1=4,x2=-2.【解析】【分析】(1)先把方程变形为x2=4,然后利用直接开平方法解方程;(2)先把方程化为一般式,然后利用因式分解法解方程.【详解】解:(1)∵x2=4,∴x=±2,∴x1=2,x2=-2;(2)方程整理为x2-2x-8=0.(x-4)(x+2)=0,x-4=0或x+2=0,∴x1=4,x2=-2.【考点】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了直接开平方法解方程.2、(1)y=-2x+220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【解析】【分析】(1)根据题意中销售量y(个)与售价x(元)之间的关系即可得到结论;(2)根据题意列出方程(-2x+220)(x-40)=2400,解方程即可求解;(3)设每星期利润为w元,构建二次函数模型,利用二次函数性质即可解决问题.【详解】(1)由题意可得,y=100-2(x-60)=-2x+220;(2)由题意可得,(-2x+220)(x-40)=2400,解得,,,∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.(3)设该网店每星期的销售利润为w元,由题意可得w=(-2x+220)(x-40)=,当时,w有最大值,最大值为2450,∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【考点】本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题.3、x1=+3,x2=﹣3.【解析】【分析】根据配方法,两边配上一次项系数一半的平方即可得到,然后利用直接开平方法求解.【详解】解:x2-2x=4,x2-2x+5=4+5,即(x-)2=9,∴x-=±3,∴x1=+3,x2=﹣3.【考点】本题主要考查配方法解一元二次方程,掌握配方法解一元二次方程的方法与步骤是解题关键.4、(1),(2),【解析】【分析】(1)将分解因式得到(x-2)(x-4)=0,得到x-2=0,x-4=0,解得,;(2)将化简得到,分解因式得到(x-3)(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论