2022山东省莱州市中考数学试卷【学生专用】附答案详解_第1页
2022山东省莱州市中考数学试卷【学生专用】附答案详解_第2页
2022山东省莱州市中考数学试卷【学生专用】附答案详解_第3页
2022山东省莱州市中考数学试卷【学生专用】附答案详解_第4页
2022山东省莱州市中考数学试卷【学生专用】附答案详解_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省莱州市中考数学试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、5个红球、4个白球放入一个不透明的盒子里,从中摸出6个球,恰好红球与白球都摸到,这个事件()A.不可能发生 B.可能发生 C.很可能发生 D.必然发生2、在中,,,给出条件:①;②;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是()A.① B.② C.③ D.①或③3、一元二次方程配方后可化为(

)A. B.C. D.4、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a的值约为()A.10 B.12 C.15 D.185、下列判断正确的是()A.明天太阳从东方升起是随机事件;B.购买一张彩票中奖是必然事件;C.掷一枚骰子,向上一面的点数是6是不可能事件;D.任意画一个三角形,其内角和是360°是不可能事件;二、多选题(5小题,每小题3分,共计15分)1、下列方程中,关于x的一元二次方程有(

)A.x2=0 B.ax2+bx+c=0 C.x2-3=x D.a2+a-x=0E.(m-1)x2+4x+=0 F. G.=2 H.(x+1)2=x2-92、下列语句中不正确的有(

)A.等弧对等弦 B.等弦对等弧C.相等的圆心角所对的弧相等 D.长度相等的两条弧是等弧3、如图是二次函数图象的一部分,过点,,对称轴为直线.则错误的有(

)A. B. C. D.4、下列方程中是一元二次方程的有(

)A.B.C.D.E.F.5、二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-1,n),其部分图象如图所示.下列结论正确的是(

)A.B.C.若,是抛物线上的两点,则D.关于x的方程无实数根第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,在中,的半径为点是边上的动点,过点作的一条切线(其中点为切点),则线段长度的最小值为____.2、如果点与点B关于原点对称,那么点B的坐标是______.3、已知抛物线与x轴的一个交点为,则代数式的值为______.4、若函数图像与x轴的两个交点坐标为和,则__________.5、圆锥的底面直径是80cm,母线长90cm.它的侧面展开图的圆心角和圆锥的全面积依次是______.四、简答题(2小题,每小题10分,共计20分)1、如图所示,抛物线的对称轴为直线,抛物线与轴交于、两点,与轴交于点.(1)求抛物线的解析式;(2)连结,在第一象限内的抛物线上,是否存在一点,使的面积最大?最大面积是多少?2、如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,点O在射线AC上(点O不与点A重合),垂足为D,以点O为圆心,分别交射线AC于E、F两点,设OD=x.(1)如图1,当点O为AC边的中点时,求x的值;(2)如图2,当点O与点C重合时,连接DF;求弦DF的长;(3)当半圆O与BC无交点时,直接写出x的取值范围.五、解答题(4小题,每小题10分,共计40分)1、如图是两条互相垂直的街道,且A到B,C的距离都是4千米.现甲从B地走向A地,乙从A地走向C地,若两人同时出发且速度都是4千米/时,问何时两人之间的距离最近?2、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.(1)图1中的“弦图”的四个直角三角形组成的图形是对称图形(填“轴”或“中心”).(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.3、(1)计算:(2)解方程:2(x﹣3)2=504、从2021年开始,重庆市新高考采用“”模式:“3”指全国统考科目,即:语文、数学、外语三个学科为必选科目;“1”为首选科目,即:物理、历史这2个学科中任选1科,且必须选1科;“2”为再选科目,即:化学、生物、思想政治、地理这4个学科中任选2科,且必须选2科.小红在高一上期期末结束后,需要选择高考科目.(1)小红在“首选科目”中,选择历史学科的概率是___________.(2)用列表法或画树状图法,求小红在“再选科目”中选择思想政治和地理这两门学科的概率.-参考答案-一、单选题1、D【解析】【分析】根据事件的可能性判断相应类型即可.【详解】5个红球、4个白球放入一个不透明的盒子里,由于红球和白球的个数都小于6,从中摸出6个球,恰好红球与白球都摸到,是必然事件.故选:D.【考点】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待.一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间.2、B【分析】画出图形,作,交BE于点D.根据等腰直角三角形的性质和勾股定理可求出AD的长,再由AD和AC的长作比较即可判断①②;由前面所求的AD的长和AB的长,结合该三角形外接圆的半径长,即可判断该外接圆的圆心可在AB上方,也可在AB下方,其与AE的交点即为C点,为两点不唯一,可判断其不符合题意.【详解】如图,,,点C在射线上.作,交BE于点D.∵,∴为等腰直角三角形,∴,∴不存在的三角形ABC,故①不符合题意;∵,,AC=8,而AC>6,∴存在的唯一三角形ABC,如图,点C即是.∴,使得BC的长唯一成立,故②符合题意;∵,,∴存在两个点C使的外接圆的半径等于4,两个外接圆圆心分别在AB的上、下两侧,如图,点C和即为使的外接圆的半径等于4的点.故③不符合题意.故选B.【点睛】本题考查等腰直角三角形的判定和性质,勾股定理,三角形外接圆的性质.利用数形结合的思想是解答本题的关键.3、B【解析】【分析】根据题意直接对一元二次方程配方,然后把常数项移到等号右边即可.【详解】解:根据题意,把一元二次方程配方得:,即,∴化成的形式为.故选:B.【考点】本题考查配方法解一元二次方程,注意掌握配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.4左右得到比例关系,列出方程求解即可.【详解】解:由题意可得,,解得,a=15.经检验,a=15是原方程的解故选:C.【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据白球的频率得到相应的等量关系.5、D【详解】解:A、明天太阳从东方升起是必然事件,故本选项错误,不符合题意;B、购买一张彩票中奖是随机事件,故本选项错误,不符合题意;C、掷一枚骰子,向上一面的点数是6是随机事件,故本选项错误,不符合题意;D、任意画一个三角形,其内角和是360°是不可能事件,故本选项正确,符合题意;故选:D【点睛】本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.二、多选题1、AC【解析】【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A.x2=0,C.x2-3=x符合一元二次方程的定义;B.ax2+bx+c=0中,当a=0时,不是一元二次方程;D.a2+a-x=0是关于x的一元一次方程;E.(m-1)x2+4x+=0,当m=1时为关于x的一元一次方程;F.+=分母中含有字母,是分式方程;G.=2是无理方程;H.(x+1)2=x2-9展开后为x2+2x+1=x2-9,即2x+1=-9是一元一次方程.故选AC.【考点】本题考查了一元二次方程的定义,一元二次方程具有以下三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.2、BCD【解析】【分析】在同圆或是等圆中,相等的圆心角所对的弧相等,所对的弦相等;在同圆或等圆中,能够互相重合的两条弧是等弧,据此判断就可以得到正确答案.【详解】解:A、等弧对等弦,正确;B、缺少前提在同圆或等圆中,故选项错误;C、缺少前提在同圆或等圆中,故选项错误;D、缺少前提在同圆或等圆中,故选项错误;故选:BCD【考点】本题考查等弧的概念和圆心角、弦、弧之间的关系,根据相关知识点解题是关键.3、BD【解析】【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴x=−1可得2a+b的符号;再由根的判别式可得,根据二次函数的对称性进而对所得结论进行判断.【详解】解:A、由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上,知c>0,∵对称轴为直线,得2a=b,∴a、b同号,即b<0,∴abc>0;故本选项正确,不符合题意;B、∵对称轴为,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本选项错误,符合题意;C、从图象知,该函数与x轴有两个不同的交点,所以根的判别式,即;故本选项正确,不符合题意;D、∵−3<x1<−2,∴根据二次函数图象的对称性,知当x=1时,y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本选项错误,符合题意.故选:BD.【考点】本题主要考查了二次函数图象与系数之间的关系,熟练运用对称轴的范围求2a与b的关系,二次函数与方程及不等式之间的关系是解决本题的关键.4、BCD【解析】【分析】根据一元二次方程的定义对6个选项逐一进行分析.【详解】A中最高次数是3不是2,故本选项错误;B符合一元二次方程的定义,故本选项正确;C原式可化为4x2—=0,符合一元二次方程的定义,故本选项正确;D原式可化为2x2十x-1=0,符合一元二次方程的定义,故本选项正确;E原式可化为2x+1=0,不符合一元二次方程的定义,故本选项错误;Fax2+bx+c=0,只有在满足a≠0的条件下才是一元二次方程,故本选项错误.故答案为:BCD【考点】本题考查了一元二次方程的概念,只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0)特别要注意a≠0的条件,这是在做题过程中容易忽视的知识点.5、CD【解析】【分析】根据二次函数的性质及与x轴另一交点的位置,即可判定A;当x=2时,即可判定B;根据对称性及二次函数的性质,可判定C;根据平移后与x轴有无交点,可判定D.【详解】解:由图象可知:该二次函数图象的对称轴为直线,∴b=2a,由图象可知:该二次函数图象与x轴的左侧交点在-3与-2之间,故与x轴的另一个交点在0与1之间,∴当x=1时,y<0,即a+b+c<0,3a+c<0,故A错误;当x=-2时,y>0,即4a-2b+c>0,故B错误;点关于对称轴对称的点的坐标为,即,在对称轴的左侧y随x的增大而增大,故,故C正确;该二次函数的顶点坐标为(−1,n),将函数向下平移n+1个单位,函数图象与x轴无交点,∴方程无实数根,故D正确,故选:CD.【考点】本题考查了二次函数图象与性质,根据二次函数的图象判定式子是否成立,解题的关键是从图象中找到相关信息.三、填空题1、【解析】【分析】如图:连接OP、OQ,根据,可得当OP⊥AB时,PQ最短;在中运用含30°的直角三角形的性质和勾股定理求得AB、AQ的长,然后再运用等面积法求得OP的长,最后运用勾股定理解答即可.【详解】解:如图:连接OP、OQ,∵是的一条切线∴PQ⊥OQ∴∴当OP⊥AB时,如图OP′,PQ最短在Rt△ABC中,∴AB=2OB=,AO=cos∠A·AB=∵S△AOB=∴,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ=.故答案为.【考点】本题考查了切线的性质、含30°直角三角形的性质、勾股定理等知识点,此正确作出辅助线、根据勾股定理确定当PO⊥AB时、线段PQ最短是解答本题的关键.2、【分析】关于原点对称的点坐标特征为:横坐标、纵坐标都互为相反数;进而求出点B坐标.【详解】解:由题意知点B横坐标为;纵坐标为;故答案为:.【点睛】本题考查了关于原点对称的点的坐标知识.解题的关键在于熟练记忆关于原点对称的点坐标中相对应的坐标互为相反数.3、2019【解析】【分析】先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果.【详解】解:将(m,0)代入函数解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.故答案为:2019.【考点】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值.4、-2【解析】【分析】根据二次函数图象对称轴所在的直线与x轴的交点的坐标,即为它的图象与x轴两交点之间线段中点的横坐标,即可求得.【详解】解:函数图像与x轴的两个交点坐标为和由对称轴所在的直线为:解得故答案为:-2.【考点】本题考查了二次函数的性质及中点坐标的求法,熟练掌握和运用二次函数的性质及中点坐标的求法是解决本题的关键.5、160°,5200【分析】由题意知,圆锥的展开图扇形的r半径为90cm,弧长l为.代入扇形弧长公式求解圆心角;代入扇形面积公式求出圆锥侧面积,然后加上底面面积即可求出全面积.【详解】解:圆锥的展开图扇形的r半径为90cm,弧长l为∵∴解得∵∴故答案为:160°,.【点睛】本题考查了扇形的圆心角与面积.解题的关键在于运用扇形的弧长与面积公式进行求解.难点在于求出公式中的未知量.四、简答题1、(1);(2)存在,当时,面积最大为16,此时点点坐标为.【解析】【分析】(1)用待定系数法解答便可;(2)设点的坐标为,连结、、.根据对称性求出点B的坐标,根据得到二次函数关系式,最后配方求解即可.【详解】解:(1)∵抛物线过点,∴.∵抛物线的对称轴为直线,∴可设抛物线为.∵抛物线过点,∴,解得.∴抛物线的解析式为,即.(2)存在,设点的坐标为,连结、、.∵点A、关于直线对称,且∴.∴.∵∴当时,面积最大为16,此时点点坐标为.【考点】本题主要考查了二次函数的图象与性质,待定系数法,三角形面积公式以及二次函数的最值求法,根据图形得出由此得出二次函数关系式是解答此题的关键.2、(1);(2);(3)满足条件的x取值范围为:0<x<3或x>12.【解析】【分析】(1)先求出OA,再判断出,得出比例式求出x的值,即可得出结论;(2)先利用等面积求出x知,再判断出,进而求出DH,OH,最后用勾股定理求出DF,即可得出结论;(3)分两种情况:点O在边AC上和在AC的延长线上,找出分界点,求出x值,即可得出结论.【详解】(1)在Rt△ABC中,AB=10,根据勾股定理得,,∵点O为AC边的中点,∴AO=AC=,∵OD⊥AB,∠ACB=90°,∴∠ADO=∠ACB,又∵∠A=∠A,∴.∴,∴,∴.(2)如图,过点D作DH⊥AC于H,∵点O与点C重合,∴S△ABC=OD•AB=,即10x=8×6,∴.∵DH⊥AC于H,∴∠DHO=∠ACB=90°,∴∠DOH+∠BOD=∠BOD+∠ABC,∴∠DOH=∠ABC,∴.∴,∴,∴,.∵OF=OD=,∴FH=OH+OF=.∴在Rt△DFH中,根据勾股定理得,∴.(3)如图,当点O在边AC上,且半圆O与AB,∴OC=OD=x,∴AO=AC﹣OC=8﹣x,∵∠ADO=∠ACB=90°,∠A=∠A,∴,∴,∴,∴x=3,∴0<x<3,如图,当点O在AC的延长线上,且半圆O与AB,∴OC=OD=x,∴AO=AC+OC=8+x,∵∠ADO=∠ACB=90°,∠A=∠A,∴,∴,∴,∴x=12,即满足条件的x取值范围为:0<x<3或x>12.【考点】此题是圆的综合题,主要考查了勾股定理,相似三角形的判定和性质,用分类讨论的思想和方程的思想解决问题是解本题的关键.五、解答题1、当t=(在0<t≤1的范围内)时,S的最小值为千米【解析】【分析】设两人均出发了t时,根据勾股定理建立甲、乙之间的距离与时间t的函数关系式,然后求出二次函数在一定的取值范围内的最值即可得解.【详解】设两人均出发了t时,则此时甲到A地的距离是(4-4t)千米,乙离A地的距离是4t千米,由勾股定理,得甲,乙两人间的距离为:S=,∴当t=(在0<t≤1的范围内)时,S的最小值为千米.【考点】本题考查二次函数的实际应用,关键在于根据题意写出二次函数关系式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论