




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省林州市中考数学高频难、易错点题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、的边经过圆心,与圆相切于点,若,则的大小等于()A. B. C. D.2、如图,是的直径,弦,垂足为,若,则()A.5 B.8 C.9 D.103、如图,该几何体的左视图是()A. B. C. D.4、二次函数的图象如图所示,对称轴是直线.下列结论:①;②;③;④(为实数).其中结论正确的个数为(
)A.1个 B.2个 C.3个 D.4个5、下列说法正确的是()A.掷一枚质地均匀的骰子,掷得的点数为3的概率是.B.若AC、BD为菱形ABCD的对角线,则的概率为1.C.概率很小的事件不可能发生.D.通过少量重复试验,可以用频率估计概率.二、多选题(5小题,每小题3分,共计15分)1、下列方程中,关于x的一元二次方程有(
)A.x2=0 B.ax2+bx+c=0 C.x2-3=x D.a2+a-x=0E.(m-1)x2+4x+=0 F. G.=2 H.(x+1)2=x2-92、已知直角三角形的两条边长恰好是方程的两个根,则此直角三角形斜边长是(
)A. B. C.3 D.53、二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-1,n),其部分图象如图所示.下列结论正确的是(
)A.B.C.若,是抛物线上的两点,则D.关于x的方程无实数根4、(多选)若数使关于的一元二次方程有两个不相等的实数解,且使关于的分式方程的解为非负整数,则满足条件的的值为(
)A.1 B.3 C.5 D.75、如图,二次函败y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的交点的横坐标分别为﹣1、3,则下列结论中正确的有()A.abc<0 B.2a+b=0 C.3a+2c>0 D.对于任意x均有ax2﹣a+bx﹣b≥0第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、已知一个扇形的半径是1,圆心角是120°,则这个扇形的面积是___________.2、若m,n是关于x的方程x2-3x-3=0的两根,则代数式m2+n2-2mn=_____.3、写出一个满足“当时,随增大而减小”的二次函数解析式______.4、如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,连接DF.若DF恰好是同圆的一个内接正多边形的一边,则这个正多边形的边数为_____.5、如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC,若弦BC的长度为,则∠BAC=________度.四、简答题(2小题,每小题10分,共计20分)1、计算:(1)(2)2、如图,在△ABC中,AB=AC,AE⊥AB于A,∠BAC=120°,AE=3cm.求BC的长.五、解答题(4小题,每小题10分,共计40分)1、一个几何体的三个视图如图所示(单位:cm).(1)写出这个几何体的名称:;(2)若其俯视图为正方形,根据图中数据计算这个几何体的表面积.2、如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,半径OD弦BC.(1)求证:弧AD=弧CD;(2)连接AC、BD相交于点F,AC与OD相交于点E,连接CD,若⊙O的半径为5,BC=6,求CD和EF的长.3、在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.实验种植数(粒)1550100200500100020003000发芽频数04459218847695119002850(1)估计该麦种的发芽概率.(2)如果播种该种小麦每公顷所需麦苗数为4000000棵,种子发芽后的成秧率为80%,该麦种的千粒质量为50g.那么播种3公顷该种小麦,估计约需麦种多少千克(精确到1kg)?4、如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C′的位置,使得CC′AB,求∠CC'A的度数.-参考答案-一、单选题1、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.【详解】解:连接,,,与圆相切于点,,,故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.2、C【分析】连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得【详解】解:如图,连接,∵是的直径,弦,∴设的半径为,则在中,,即解得即故选C【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.3、C【分析】根据从左边看得到的图形是左视图解答即可.【详解】解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C正确.故选C.【点睛】本题主要考查了简单组合体的三视图,掌握三视图的定义成为解答本题的关键.4、C【解析】【分析】①由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得到,可得出,选项①错误;②把代入中得,所以②正确;③由时对应的函数值,可得出,得到,由,,,得到,选项③正确;④由对称轴为直线,即时,有最小值,可得结论,即可得到④正确.【详解】解:①∵抛物线开口向上,∴,∵抛物线的对称轴在轴右侧,∴,∵抛物线与轴交于负半轴,∴,∴,①错误;②当时,,∴,∵,∴,把代入中得,所以②正确;③当时,,∴,∴,∵,,,∴,即,所以③正确;④∵抛物线的对称轴为直线,∴时,函数的最小值为,∴,即,所以④正确.故选C.【考点】本题考查了二次函数图象与系数的关系:二次项系数决定抛物线的开口方向和大小.当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时,对称轴在轴左;当与异号时,对称轴在轴右.常数项决定抛物线与轴交点:抛物线与轴交于.抛物线与轴交点个数由判别式确定:时,抛物线与轴有2个交点;时,抛物线与轴有1个交点;时,抛物线与轴没有交点.5、B【分析】概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可.【详解】A项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是,故A错误,不符合题意;B项:若AC、BD为菱形ABCD的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则AC⊥BD的概率为1是正确的,故B正确,符合题意;C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意.故选B【点睛】本题考查概率的命题真假,准确理解事务发生的概率是本题关键.二、多选题1、AC【解析】【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A.x2=0,C.x2-3=x符合一元二次方程的定义;B.ax2+bx+c=0中,当a=0时,不是一元二次方程;D.a2+a-x=0是关于x的一元一次方程;E.(m-1)x2+4x+=0,当m=1时为关于x的一元一次方程;F.+=分母中含有字母,是分式方程;G.=2是无理方程;H.(x+1)2=x2-9展开后为x2+2x+1=x2-9,即2x+1=-9是一元一次方程.故选AC.【考点】本题考查了一元二次方程的定义,一元二次方程具有以下三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.2、AC【解析】【分析】先解出一元二次方程,再根据勾股定理计算即可;【详解】,,∴或,当2、3是直角边时,斜边;∵,∴3可以是三角形斜边;故选AC.【考点】本题主要考查了一元二次方程的求解、勾股定理,准确计算是解题的关键.3、CD【解析】【分析】根据二次函数的性质及与x轴另一交点的位置,即可判定A;当x=2时,即可判定B;根据对称性及二次函数的性质,可判定C;根据平移后与x轴有无交点,可判定D.【详解】解:由图象可知:该二次函数图象的对称轴为直线,∴b=2a,由图象可知:该二次函数图象与x轴的左侧交点在-3与-2之间,故与x轴的另一个交点在0与1之间,∴当x=1时,y<0,即a+b+c<0,3a+c<0,故A错误;当x=-2时,y>0,即4a-2b+c>0,故B错误;点关于对称轴对称的点的坐标为,即,在对称轴的左侧y随x的增大而增大,故,故C正确;该二次函数的顶点坐标为(−1,n),将函数向下平移n+1个单位,函数图象与x轴无交点,∴方程无实数根,故D正确,故选:CD.【考点】本题考查了二次函数图象与性质,根据二次函数的图象判定式子是否成立,解题的关键是从图象中找到相关信息.4、AC【解析】【分析】根据一元二次方程根的判别式及分式有意义的条件和分式方程的解为非负整数分别求出a的取值范围,即可得答案.【详解】∵关于的一元二次方程有两个不相等的实数解,∴,解得:,∵,∴,解得:,∵关于的分式方程的解为非负整数,∴且,解得:且,∴且a≠3,∵是整数,∴a=1或5,故选:AC.【考点】本题考查一元二次方程根的判别式、解分式方程及分式有意义的条件,正确得出两个不等式的解集是解题关键,注意分式的分母不为0的隐含条件,避免漏解.5、BD【解析】【分析】由抛物线开口方向得到a>0,利用抛物线与x轴的交点问题和抛物线的对称性得到抛物线的对称轴为直线x=1,即-=1,所以b=-2a<0,利用抛物线与y轴的交点位置得到c<0,则可对A进行判断;利用b=-2a可对B进行判断;由于x=-1时,y=0,所以a-b+c=0,则c=-3a,3a+2c=-3a<0,于是可对C进行判断;根据二次函数性质,x=1时,y的值最小,所以a+b+c≤ax2+bx+c,于是可对D进行判断.【详解】解:∵抛物线开口向上,∴a>0,∵抛物线与x轴的交点的坐标分别为(-1,0),(3,0),∴抛物线的对称轴为直线x=1,即-=1,∴b=-2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以A错误;∵b=-2a,∴2a+b=0,所以B正确;∵x=-1时,y=0,∴a-b+c=0,即a+2a+c=0,∴c=-3a,∴3a+2c=3a-6a=-3a<0,所以C错误;∵x=1时,y的值最小,∴对于任意x,a+b+c≤ax2+bx+c,即ax2-a+bx-b≥0,所以D正确.故选:BD.【考点】本题考查了二次函数与不等式(组):函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围;利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.三、填空题1、【分析】根据圆心角为的扇形面积是进行解答即可得.【详解】解:这个扇形的面积.故答案是:.【点睛】本题考查了扇形的面积,解题的关键是掌握扇形的面积公式.2、21【解析】【分析】先根据根与系数的关系得到m+n=3,mn=﹣3,再根据完全平方公式变形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整体代入的方法计算.【详解】解:∵m,n是关于x的方程x2-3x-3=0的两根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案为:21.【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2,x1x2.3、(答案不唯一)【解析】【分析】先根据二次函数的图象和性质取对称轴x=2,设抛物线的解析式为y=a(x-2)2,由于在抛物线对称轴的右边,y随x增大而减小,得出a<0,于是去a=-1,即可解答.【详解】解:设抛物线的解析式为y=a(x-2)2,∵在抛物线对称轴的右边,y随x增大而减小,∴a<0,符合上述条件的二次函数均可,可取a=-1,则y=-(x-2)2.故答案为:y=-(x-2)2.【考点】本题考查了二次函数的图象和性质,解题的关键是掌握二次函数的图象和性质.4、12【解析】【分析】连接OA、OD、OF,如图,利用正多边形与圆,分别计算⊙O的内接正四边形与内接正三角形的中心角得到∠AOD=90°,∠AOF=120°,则∠DOF=30°,然后计算即可得到n的值.【详解】解:连接OA、OD、OF,如图,设这个正多边形为n边形,∵AD,AF分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF-∠AOD=30°,∴n==12,即DF恰好是同圆内接一个正十二边形的一边.故答案为:12.【考点】本题考查了正多边形与圆:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆;熟练掌握正多边形的有关概念.5、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.【详解】解:如图作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案为:60.【点睛】本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.四、简答题1、(1);(2)2.【解析】【分析】(1)先去绝对值,零指数幂,负指数幂,二次根式化简,再合并同类项即可;(2)先计算负指数幂,代入特殊角三角函数值,二次根式化简,再计算乘法,合并同类项即可.【详解】解:(1),=,=;(2)=,=,=2.【考点】本题考查特殊角三角函数值,二次根式,负指数幂,零指数幂,绝对值的混合运算,掌握运算法则是解题关键.2、9【解析】【分析】过点A作AF⊥BC交BC于F,则由已知得:BC=2BF,首先由AB=AC,∠BAC=120°得∠B=∠C=30°,则在直角三角形BAE中求出AB,再在直角三角形AFB中求出BF,从而求出BC.【详解】解:过点A作AF⊥BC交BC于F,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,BC=2BF,在Rt△BAE中,AE=3cm,∴AB=cm,在Rt△AFB中,BF=AB•cos30°=,∴BC=2BF=2×=9.【考点】本题考查了等腰三角形的性质和解直角三角形,通过作辅助线构造直角三角形是解题关键五、解答题1、(1)长方体或四棱柱(2)66cm2【分析】(1)这个立方体的三视图都是长方形所以这个几何体应该是长方体;(2)长方体一共有6个面,算长方体的表面积应该把这6个面的面积相加即可.(1)∵这个立方体的三视图都是长方形,∴这个立方体是长方体或四棱柱.(2)由三视图知该长方体的表面积:(3)(3×4)×4+(3×3)×2=66(cm2)【点睛】本题考查了由立体图形的三视图确定立体图形的形状;根据边长求表面积大小.解题的关键是要有空间想象能力.长方体有六个面,算表面积时不要遗漏.2、(1)见解析;(2)CD=,EF=1.【分析】(1)连接OC,根据圆的性质,得到OB=OC;根据等腰三角形的性质,得到;根据平行线的性质,得到;在同圆和等圆中,根据相等的圆心解所对的弧等即得证.(2)根据直径所对的圆周角是直角求出∠ACB=90°,根据平行线的性质求得∠AEO=∠ACB=90°,利用勾股定理求出AC=8,根据垂径定理求得EC=AE=4,根据中位线定理求出OE,在Rt△CDE中,根据勾股定理求出CD,因为,所以△EDF∽△BCF,最后根据似的性质,列方程求解即可.【详解】(1)解:连结OC.∵∴∠1=∠B∠2=∠C∵OB=OC∴∠B=∠C∴∠1=∠2∴弧AD=弧CD(2)∵AB是的直径∴∠ACB=90°∵∴∠AEO=∠ACB=90°Rt△ABC中,∠ACB=90°,∵BC=6,AB=10∴AC=8∵半径OD⊥AC于E∴EC=AE=4OE=∴ED=2由勾股定理得,CD=∵∴△EDF∽△CBF∴设EF=x,则FC=4-x∴EF=1,经检验符合题意.【点睛】本题考查了圆的综合题,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院医学图书管理工作计划
- 2025年乡镇水利站专技人员招聘考试高频考点梳理
- 2025年中国电信运营商校园招聘面试准备指南及模拟题答案
- 2025年乡村信息员招聘考试备考指南及要点解析
- 2025年人防招聘考试模拟题伪装遮障篇
- 2025年人工智能工程师面试技巧与预测题集
- 公共安全工程劳动力安排和材料投入计划及其保证措施
- 铁合金成品工技术考核试卷及答案
- 美业激励培训课件
- 隧道工效率提升考核试卷及答案
- 联邦学习框架下的设备故障智能诊断算法研究
- 婚内财产协议模板
- 中国钼金属行业市场调查报告
- 物业追缴奖励方案(3篇)
- 华为公司组织管理制度
- 2025年中国蛋白肽市场现状分析及前景预测报告
- 幼儿大班如厕教学课件
- 2025年智慧城市产业园区开发建设社会稳定风险评估与风险防范对策报告
- 《医疗机构工作人员廉洁从业九项准则》解读
- Axure RP 互联网产品原型设计课件 第10章 团队合作与输出
- 《支架外固定的护理》课件
评论
0/150
提交评论