




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省丹阳市中考数学综合提升测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物线.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是()A. B. C. D.2、下列判断正确的个数有()①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④弧分优弧和劣弧;⑤同一条弦所对的两条弧一定是等弧.A.1个 B.2个 C.3个 D.4个3、如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,过点C作⊙O的切线,交AB的延长线于点D.设∠A=α,∠D=β,则()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°4、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.5、二次函数的图像如图所示,现有以下结论:(1):(2);(3),(4);(5);其中正确的结论有(
)A.2个 B.3个 C.4个 D.5个.二、多选题(5小题,每小题3分,共计15分)1、二次函数的部分图象如图所示,图象过点(-3,0),对称轴为.下列结论正确的是(
)A.B.C.D.若(-5,),(2,)是抛物线上两点,则2、下列说法正确的是(
)A.圆是轴对称图形,它有无数条对称轴B.圆的半径、弦长的一半、弦上的弦心距能组成一个直角三角形,且圆的半径是此直角三角形的斜边C.弦长相等,则弦所对的弦心距也相等D.垂直于弦的直径平分这条弦,并且平分弦所对的弧3、下列方程中,是一元二次方程的是(
)A. B. C. D.4、在中,,,且关于x的方程有两个相等的实数根,以下结论正确的是(
)A.AC边上的中线长为1 B.AC边上的高为C.BC边上的中线长为 D.外接圆的半径是25、古希腊数学家欧几里得在《几何原本》中记载了用尺规作某种六边形的方法,其步骤是:①在⊙O上任取一点A,连接AO并延长交⊙O于点B;②以点B为圆心,BO为半径作圆弧分别交⊙O于C,D两点;③连接CO,DO并延长分别交⊙O于点E,F;④顺次连接BC,CF,FA,AE,ED,DB,得到六边形AFCBDE.连接AD,EF,交于点G,则下列结论正确的是.A.△AOE的内心与外心都是点G B.∠FGA=∠FOAC.点G是线段EF的三等分点 D.EF=AF第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌子上,从中随机抽取一张,则抽出的牌上的数小于5的概率为_____.2、点P为边长为2的正方形ABCD内一点,是等边三角形,点M为BC中点,N是线段BP上一动点,将线段MN绕点M顺时针旋转60°得到线段MQ,连接AQ、PQ,则的最小值为______.3、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.4、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留)5、圆锥的底面直径是80cm,母线长90cm.它的侧面展开图的圆心角和圆锥的全面积依次是______.四、简答题(2小题,每小题10分,共计20分)1、定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,在四边形中,,,对角线平分.求证:是四边形的“相似对角线”;(2)如图2,已知是四边形的“相似对角线”,.连接,若的面积为,求的长.2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与⊙O相切?五、解答题(4小题,每小题10分,共计40分)1、已知抛物线.(1)该抛物线的对称轴为;(2)若该抛物线的顶点在x轴上,求抛物线的解析式;(3)设点M(m,),N(2,)在该抛物线上,若>,求m的取值范围.2、如图,在直角坐标平面内,已知点A的坐标(﹣2,0).(1)图中点B的坐标是______;(2)点B关于原点对称的点C的坐标是_____;点A关于y轴对称的点D的坐标是______;(3)四边形ABDC的面积是______;(4)在y轴上找一点F,使,那么点F的所有可能位置是______.3、解下列方程.(1)x2+2x=0;(2)2x2-3x-1=0.4、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,将△ABC绕点B按顺时针方向旋转.(1)当C转到AB边上点C′位置时,A转到A′,(如图1所示)直线CC′和AA′相交于点D,试判断线段AD和线段A′D之间的数量关系,并证明你的结论.(2)将Rt△ABC继续旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将Rt△ABC旅转至A、C′、A′三点在一条直线上时,请直接写出此时旋转角α的度数.-参考答案-一、单选题1、D【分析】根据题意,判断出中心对称图形的个数,进而即可求得答案【详解】解:∵线段、等边三角形、正方形、长方形、圆、抛物线中,中心对称图形有:线段、正方形、长方形、圆,共4种,总数为6种∴在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是故选D【点睛】本题考查了概率公式求概率,中心对称图形,掌握线段、等边三角形、正方形、长方形、圆、抛物线的性质是解题的关键.2、B【详解】①直径是圆中最大的弦;故①正确,②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确③半径相等的两个圆是等圆;故③正确④弧分优弧、劣弧和半圆,故④不正确⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.综上所述,正确的有①③故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.3、C【解析】【分析】连接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切线,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【详解】连接OC,如图,∵⊙O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故选:C.【考点】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质.4、C【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:C.【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;(2)∵a<0,b>0,c>0,∴abc<0,故命题正确;(3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;(4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;故选C.【考点】本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、多选题1、ABD【解析】【分析】利用抛物线开口方向得到a>0,利用对称轴方程得到b=2a>0,利用抛物线与y轴的交点位置得到c<0,则可对A进行判断;利用b=2a可对B进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(1,0),所以x=2时,y>0,则可对C进行判断;利用二次函数的性质对D进行判断.【详解】解:A.∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a>0,∵抛物线与y轴的交点坐标在x轴下方,∴c<0,∴abc<0,故选项正确,符合题意;B.∵b=2a,∴2a﹣b=0,故选项正确,符合题意;C.∵抛物线与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点坐标为(1,0),∴当x=2时,y>0,∴4a+2b+c>0,故选项错误,不符合题意;D.∵点(﹣5,y1)到直线x=﹣1的距离比点(2,y2)到直线x=﹣1的距离大,∴y1>y2,故选项正确,符合题意.故选:ABD.【考点】此题考查了二次函数的图像和性质,熟练掌握二次函数的图像和性质是基础,数形结合是解决问题的关键.2、ABD【解析】【分析】根据圆的相关知识和垂径定理进行分析即可.【详解】解:A.圆是轴对称图形,它有无数条对称轴,正确;B.圆的半径、弦长的一半、弦上的弦心距能组成一个直角三角形,且圆的半径是此直角三角形的斜边,正确;C.弦长相等,则弦所对的弦心距也相等,不正确,只有在同圆或等圆中,弦长相等,则弦所对的弦心距也相等;D.垂直于弦的直径平分这条弦,并且平分弦所对的弧,正确.故选:ABD.【考点】本题考查了学生对圆的基本概念和垂径定理的理解,属于基础题.3、ABC【解析】【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A、是一元二次方程,故本选项符合题意;B、是一元二次方程,故本选项符合题意;C、是一元二次方程,故本选项符合题意;D、方程,整理得:,是一元一次方程,不是一元二次方程,故本选项不符合题意;故选:【考点】本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的次数最高是2的整式.4、BCD【解析】【分析】由根的判别式求出AC=b=4,由勾股定理的逆定理证出△ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出AC的长,利用等积法求出斜边上的高,根据勾股定理求出BC边上的中线,利用直角三角形外接圆的半径是斜边的一半得出外接圆的半径.【详解】∵一元二次方程x2-4x+b=0有两个相等的实数根,∴(-4)2-4b=0,∴b=4.∴AC=4,∴AB2+BC2=AC2,∵△ABC为直角三角形,∵直角三角形斜边上的中线等于斜边的一半的性质,∴AC边上的中线长=2,故A错误;∵ABBC=ACh∴22=4h∴h=故B正确;BC边上的中线==故C正确直角三角形外接圆的半径等于斜边的一半,所以为2故D正确.故答案为:BCD【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ=0,方程有两个相等的实数根;还考查了利用勾股定理判定直角三角形及勾股定理的应用,并考查了直角三角形斜边上的中线等于斜边的一半的性质以及三角形的外接圆的性质.5、ABC【解析】【分析】证明△AOE是等边三角形,EF⊥OA,AD⊥OE,可判断A;.证明∠AGF=∠AOF=60°,可判断B;证明FG=2GE,可判断C;证明EF=AF,可判断D.【详解】解:如图,在正六边形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等边三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四边形AEOF,四边形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的内心与外心都是点G,故A正确,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正确,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴点G是线段EF的三等分点,故C正确,∵AF=AE,∠FAE=120°,∴EF=AF,故D错误,故答案为:ABC.【考点】本题考查作图-复杂作图,等边三角形的判定和性质,菱形的判定和性质,三角形的内心,外心等知识,解题的关键是证明四边形AEOF,四边形AODE都是菱形.三、填空题1、【分析】抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于5的概率.【详解】解:∵抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,∴从中任意抽取一张,抽出的牌点数小于5的概率是:.故答案为:.【点睛】此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.2、【分析】如图,取的中点,连接,,,证明,进而证明在上运动,且垂直平分,根据,求得最值,根据正方形的性质和勾股定理求得的长即可求得的最小值.【详解】解:如图,取的中点,连接,,,将线段MN绕点M顺时针旋转60°得到线段MQ,,是等边三角形,,是的中点,是的中点是等边三角形,即在和中,又是的中点点在上是的中点,是等边三角,又垂直平分即的最小值为四边形是正方形,且的最小值为故答案为:【点睛】本题考查了正方形的性质等边三角形的性质,旋转的性质,全等三角形的性质与判定,勾股定理,垂直平分线的性质与判定,根据以上知识转化线段是解题的关键.3、65【分析】根据切线的性质得到OA⊥AP,根据直角三角形的两锐角互余计算,得到答案.【详解】解:∵PA是⊙O的切线,∴OA⊥AP,∴,∵∠APO=25°,∴,故答案为:65.【点睛】本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.4、【分析】已知扇形的圆心角为,半径为2,代入弧长公式计算.【详解】解:依题意,n=,r=2,∴扇形的弧长=.故答案为:.【点睛】本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=.5、160°,5200【分析】由题意知,圆锥的展开图扇形的r半径为90cm,弧长l为.代入扇形弧长公式求解圆心角;代入扇形面积公式求出圆锥侧面积,然后加上底面面积即可求出全面积.【详解】解:圆锥的展开图扇形的r半径为90cm,弧长l为∵∴解得∵∴故答案为:160°,.【点睛】本题考查了扇形的圆心角与面积.解题的关键在于运用扇形的弧长与面积公式进行求解.难点在于求出公式中的未知量.四、简答题1、(1)见解析;(2)【解析】【分析】(1)根据所给的相似对角线的证明方法证明即可;(2)由题可证的,得到,过点E作,可得出EQ,根据即可求解;【详解】(1)证明:∵,平分,∴,∴.∵,∴.,∴∴是四边形ABCD的“相似对角线”.(2)∵是四边形EFGH的“相似对角线”,∴三角形EFH与三角形HFG相似.又,∴,∴,∴.过点E作,垂足为.则.∵,∴,∴,∴,∴.【考点】本题主要考查了四边形综合知识点,涉及了相似三角形,解直角三角形等知识,准确分析并能灵活运用相关知识是解题的关键.2、(1)当时,四边形PQCD为平行四边形;(2)当t=2秒时,PQ与⊙O相切.【解析】【分析】(1)由题意得:,,则,再由四边形PQCD是平行四边形,得到DP=CQ,由此建立方程求解即可;(2)设PQ与⊙O相切于点H过点P作PE⊥BC,垂足为E.先证明四边形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切线长定理得到AP=PH,HQ=BQ,则PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,则122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【详解】解:(1)由题意得:,,∴,∵四边形PQCD是平行四边形,∴DP=CQ,∴,解得,∴当时,四边形PQCD为平行四边形;(2)设PQ与⊙O相切于点H过点P作PE⊥BC,垂足为E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四边形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB为⊙O的直径,∠ABC=∠DAB=90°,∴AD、BC为⊙O的切线,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD边运动的时间为秒.∵t=9>8,∴t=9(舍去),∴当t=2秒时,PQ与⊙O相切.【考点】本题主要考查了切线长定理,矩形的性质与判定,勾股定理,平行四边形的性质等等,解题的关键在于能够熟练掌握切线长定理.五、解答题1、(1)直线x=-1;(2)或;(3)当a>0时,m<-4或m>2;当a<0时,-4<m<2.【解析】【分析】(1)利用二次函数的对称轴公式即可求得.(2)根据题意可知顶点坐标,再利用待定系数法即可求出二次函数解析式.(3)分类讨论当a>0时和a<0时二次函数的性质,即可求出m的取值范围.【详解】(1)利用二次函数的对称轴公式可知对称轴.故答案为:.(2)∵抛物线顶点在x轴上,对称轴为,∴顶点坐标为(-1,0).将顶点坐标代入二次函数解析式得:,整理得:,解得:.∴抛物线解析式为或.(3)∵抛物线的对称轴为直线x=-1,∴N(2,y2)关于直线x=-1的对称点为(-4,y2).根据二次函数的性质分类讨论.(ⅰ)当a>0时,抛物线开口向上,若y1>y2,即点M在点N或的上方,则m<-4或m>2;(ⅱ)当a<0时,抛物线开口向下,若y1>y2,即点M在点N或的上方,则-4<m<2.【考点】本题为二次函数综合题,掌握二次函数的性质是解答本题的关键.2、(1)(﹣3,4)(2)(3,﹣4),(2,0)(3)16(4)(0,4)或(0,﹣4)【分析】(1)根据坐标的定义,判定即可;(2)根据原点对称,y轴对称的点的坐标特点计算即可;(3)把四边形的面积分割成三角形的面积计算;(4)根据面积相等,确定OF的长,从而确定坐标.(1)过点B作x轴的垂线,垂足所对应的数为﹣3,因此点B的横坐标为﹣3,过点B作y轴的垂线,垂足所对应的数为4,因此点B的纵坐标为4,所以点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 莱阳团建活动方案
- 食堂一周年活动方案
- 麦当劳新品试吃活动方案
- 餐厅媒体活动方案
- 部门组织做饭活动方案
- 光模块考试题及答案
- 古诗格子考试题及答案
- 各地联考试题及答案
- 分选培训考试题及答案
- 防灾知识考试题及答案
- 2025年工地安全员培训考试试题及答案
- 文明有礼+课件-2025-2026学年统编版道德与法治八年级上册
- 供水设备运行维护与保养技术方案
- 木雕工艺课件
- 2025年2个清单28个问题查摆整改措施
- 摩擦力影响因素实验报告范本
- 教育系统应急知识培训课件
- 基坑防护课件
- 2025年黑龙江省龙东地区中考英语真题含答案
- 医疗器械生产质量管理规范2025版
- 2025年医护人员法律法规知识考试题库及答案(一)
评论
0/150
提交评论