2023年度广东省信宜市中考数学全真模拟模拟题及完整答案详解【各地真题】_第1页
2023年度广东省信宜市中考数学全真模拟模拟题及完整答案详解【各地真题】_第2页
2023年度广东省信宜市中考数学全真模拟模拟题及完整答案详解【各地真题】_第3页
2023年度广东省信宜市中考数学全真模拟模拟题及完整答案详解【各地真题】_第4页
2023年度广东省信宜市中考数学全真模拟模拟题及完整答案详解【各地真题】_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省信宜市中考数学全真模拟模拟题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①4a+2b+c>0

;②y随x的增大而增大;③方程ax2+bx+c=0两根之和小于零;④一次函数y=ax+bc的图象一定不过第二象限,其中正确的个数是(

)A.4个 B.3个 C.2个 D.1个2、若关于x的二次函数y=ax2+bx的图象经过定点(1,1),且当x<﹣1时y随x的增大而减小,则a的取值范围是()A. B. C. D.3、二次函数y=ax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴的交点坐标是(

)A.(﹣1,0)和(5,0) B.(1,0)和(5,0)C.(0,﹣1)和(0,5) D.(0,1)和(0,5)4、如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55° B.65° C.60° D.75°5、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()A. B.C. D.二、多选题(5小题,每小题3分,共计15分)1、二次函数(a,b,c是常数,)的自变量x与函数值y的部分对应值如下表:x…-2-1012……tm22n…已知.则下列结论中,正确的是(

)A. B.和是方程的两个根C. D.(s取任意实数)2、下列条件中,不能确定一个圆的是(

)A.圆心与半径 B.直径C.平面上的三个已知点 D.三角形的三个顶点3、下列说法中,正确的有()A.等弧所对的圆心角相等B.经过三点可以作一个圆C.平分弦的直径垂直于这条弦D.圆的内接平行四边形是矩形4、若为圆内接四边形,则下列哪个选项可能成立(

)A. B.C. D.5、下列图形中,是中心对称图形的是(

)A. B.C. D.第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、抛物线的开口方向向______.2、将抛物线沿直线方向移动个单位长度,若移动后抛物线的顶点在第一象限,则移动后抛物线的解析式是__________.3、若抛物线的图像与轴有交点,那么的取值范围是________.4、如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为_____5、如图,已知P是函数y1图象上的动点,当点P在x轴上方时,作PH⊥x轴于点H,连接PO.小华用几何画板软件对PO,PH的数量关系进行了探讨,发现PO﹣PH是个定值,则这个定值为_____.四、解答题(6小题,每小题10分,共计60分)1、为增加农民收入,助力乡村振兴.某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8≤x≤40)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)求五一期间销售草莓获得的最大利润.2、如图,两个圆都以点O为圆心,大圆的弦交小圆于两点.求证:.3、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点.(1)求二次函数的解析式;(2)为线段上一动点,过点且垂直于轴的直线与抛物线及直线分别交于点、.直线与直线交于点,当时,求值.4、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与⊙O相切?5、解关于y的方程:by2﹣1=y2+2.6、用适当的方法解下列方程:(1)x2-x-1=0;(2)3x(x-2)=x-2;(3)x2-2x+1=0;(4)(x+8)(x+1)=-12.-参考答案-一、单选题1、D【解析】【分析】根据函数的图象可知x=2时,函数值的正负性;并且可知与x轴有两个交点,即对应方程有两个实数根;函数的增减性需要找到其对称轴才知具体情况;由函数的图象还可知b、c的正负性,一次函数y=ax+bc所经过的象限进而可知正确选项.【详解】∵当x=2时,y=4a+2b+c,对应的y值为正,即4a+2b+c>0,故①正确;∵因为抛物线开口向上,在对称轴左侧,y随x的增大而减小;在对称轴右侧,y随x的增大而增大,故②错误;∵由二次函数y=ax2+bx+c(a≠0)的图象可知:函数图象与x轴有两个不同的交点,即对应方程有两个不相等的实数根,且正根的绝对值较大,∴方程ax2+bx+c=0两根之和大于零,故③错误;∵由图象开口向上,知a>0,与y轴交于负半轴,知c<0,由对称轴,知b<0,∴bc>0,∴一次函数y=ax+bc的图象一定经过第二象限,故④错误;综上,正确的个数为1个,故选:D.【考点】本题考查了二次函数的图象与系数的关系以及一次函数的图象,利用了数形结合的思想,此类题涉及的知识面比较广,能正确观察图象是解本题的关键.2、D【解析】【分析】根据题意开口向上,且对称轴−≥−1,a+b=1,即可得到−≥−1,从而求解.【详解】由二次函数y=ax2+bx可知抛物线过原点,∵抛物线定点(1,1),且当x<-1时,y随x的增大而减小,∴抛物线开口向上,且对称轴−≥−1,a+b=1,∴a>0,b=1﹣a,∴﹣≥﹣1,∴,故选:D.【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,根据题意得关于a的不等式组是解题的关键.3、A【解析】【分析】首先根据图像得出抛物线的对称轴和其中一个交点坐标,然后根据二次函数的对称性即可求得另一个交点坐标.【详解】解:由图像可得,抛物线的对称轴为,与x轴的一个交点坐标为(5,0),∵抛物线与x轴的两个交点关于对称轴对称,∴抛物线与x轴的另一个交点坐标为(﹣1,0),故选:A.【考点】此题考查了二次函数与x轴的交点,二次函数的对称性,解题的关键是根据二次函数的对称性求出与x轴的另一个交点坐标.4、B【解析】【分析】连接CD,根据圆内接四边形的性质得到∠CDB=180°﹣∠A=130°,根据垂径定理得到OD⊥BC,求得BD=CD,根据等腰三角形的性质即可得到结论.【详解】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故选:B.【考点】本题考查了圆内接四边形的性质,垂径定理,等腰三角形的性质等知识.正确理解题意是解题的关键.5、D【解析】【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D.【考点】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.二、多选题1、BC【解析】【分析】由表中数据,结合二次函数的对称性,可知,二次函数的对称轴为,结合抛物线对称轴为:,得出,由,,结合二次函数图象性质,逐一分析各个选项,即可作出相应的判断.【详解】解:由表格数据可知,当时,,将点代入中,可得.由表格数据可知,当时,;当时,;即抛物线对称轴为:,∵抛物线对称轴为:,∴,化简得,.∵,,∴抛物线解析式化为,.将点代入中,化简得,,∵,∴,解得.∵,∴.∵,,,∴,故A选项说法错误,不符合题意;∵二次函数对称轴为,∴和时,对应的函数值相等,∵时,对应函数值为,∴和是方程的两个根,故B选项说法正确,符合题意;由表中数据可知,二次函数过点和,将点和分别代入二次函数解析式中,可得,,,故,C选项说法正确,符合题意;∵,∴,∵,∴,即,∵,∴,s取任意实数,故D选项说法错误,不符合题意;故选:BC.【考点】本题考查了二次函数的图象性质,二次函数与一元二次方程的关系,深入理解函数概念,熟练掌握二次函数图象性质是解题的关键.2、C【解析】【分析】根据不在同一条直线上的三个点确定一个圆,已知圆心和直径所作的圆是唯一的进行判断即可得出答案.【详解】解:A、已知圆心与半径能确定一个圆,不符合题意;B、已知直径能确定一个圆,不符合题意;C、平面上的三个已知点,不能确定一个圆,符合题意;D、已知三角形的三个顶点,能确定一个圆,不符合题意;故选C.【考点】本题考查了确定圆的条件,解题的关键是分类讨论.3、AD【解析】【分析】根据圆的有关概念及性质,对选项逐个判断即可.【详解】解:A.等弧是能够完全重合的弧,因此等弧所对的圆心角相等,正确,符合题意;B.经过不在同一直线上的三点可以作一个圆,故原命题错误,不符合题意;C.平分弦(不是直径)的直径垂直于这条弦,故原命题错误,不符合题意;D.圆的内接平行四边形是矩形,正确,符合题意,正确的有A、D,故答案为:A、D.【考点】此题考查了圆的有关概念及性质,解题的关键是熟练掌握圆的相关概念以及性质.4、BD【解析】【分析】根据圆内接四边形的性质得出∠A+∠C=∠B+∠D=180°,再逐个判断即可.【详解】解:∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∠B+∠D=180°,∴∠A+∠C=∠B+∠D,A.∵,∴∠A+∠C≠∠B+∠D,故本选项不符合题意;B.∵,∴∠A+∠C=∠B+∠D,故本选项符合题意;C.∵,∴∠A+∠C≠∠B+∠D,故本选项不符合题意;D.∵,∴∠A+∠C=∠B+∠D,故本选项符合题意;故选:BD.【考点】本题考查了圆周角定理和圆内接四边形的性质,注意:圆内接四边形的对角互补.5、BD【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,进而判断得出答案.【详解】解:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项不符合题意;B.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,故此选项符合题意;C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项不合题意;D.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,故此选项符合题意.故选:BD.【考点】本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.三、填空题1、下【解析】【分析】根据二次函数二次项系数的大小判断即可;【详解】∵,∴抛物线开口向下;故答案是下.【考点】本题主要考查了判断抛物线的开口方向,准确分析判断是解题的关键.2、【解析】【分析】设抛物线沿直线方向移动个单位长度后顶点坐标为(t,3t),再求出平移后的顶点坐标,最后求出平移后的函数关系式.【详解】设抛物线沿直线方向移动个单位长度后顶点坐标为(t,3t),∴,解得:t=1或t=-1(舍去),∴平移后的顶点坐标为(1,3),∴移动后抛物线的解析式是.故答案为:.【考点】本题考查二次函数的图象变换及一次函数的图像,解题的关键是正确理解图象变换的条件,本题属于基础题型.3、【解析】【分析】由抛物线的图像与轴有交点可知,从而可求得的取值范围.【详解】解:∵抛物线的图像与轴有交点∴令,有,即该方程有实数根∴∴.故答案是:【考点】本题考查了二次函数与轴的交点情况与一元二次方程分的情况的关系、解一元一次不等式,能由已知条件列出关于的不等式是解题的关键.4、【解析】【分析】连接OA,OC,根据∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案为.【考点】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.5、2【解析】【分析】设p(x,x2-1),则OH=|x|,PH=|x2-1|,因点P在x轴上方,所以x2-1>0,由勾股定理求得OP=x2+1,即可求得OP-PH=2,得出答案.【详解】解:设p(x,x2-1),则OH=|x|,PH=|x2-1|,当点P在x轴上方时,∴x2-1>0,∴PH=|x2-1|=x2-1,在Rt△OHP中,由勾股定理,得OP2=OH2+PH2=x2+(x2-1)2=(x2+1)2,∴OP=x2+1,∴OP-PH=(x2+1)-(x2-1)=2,故答案为:2.【考点】本题考查二次函数图象上点的坐标特征,勾股定理,利用坐标求线段长度是解题的关键.四、解答题1、(1);(2)最大利润为3840元【解析】【分析】(1)分为8≤x≤32和32<x≤40求解析式;(2)根据“利润=(售价−成本)×销售量”列出利润的表达式,在根据函数的性质求出最大利润.【详解】解:(1)当8≤x≤32时,设y=kx+b(k≠0),则,解得:,∴当8≤x≤32时,y=−3x+216,当32<x≤40时,y=120,∴;(2)设利润为W,则:当8≤x≤32时,W=(x−8)y=(x−8)(−3x+216)=−3(x−40)2+3072,∵开口向下,对称轴为直线x=40,∴当8≤x≤32时,W随x的增大而增大,∴x=32时,W最大=2880,当32<x≤40时,W=(x−8)y=120(x−8)=120x−960,∵W随x的增大而增大,∴x=40时,W最大=3840,∵3840>2880,∴最大利润为3840元.【考点】点评:本题以利润问题为背景,考查了待定系数法求一次函数的解析式、分段函数的表示、二次函数的性质,本题解题的时候要注意分段函数对应的自变量x的取值范围和函数的增减性,先确定函数的增减性,才能求得利润的最大值.2、见解析【解析】【分析】过点O作OP⊥AB,由等腰三角形的性质可知AP=BP,再由垂径定理可知CP=DP,故可得出结论.【详解】证明:如图所示,过点O作OP⊥AB,垂足为点P,由垂径定理可得PA=PB,PC=PD,PA-PC=PB-PD,AC=BD.【考点】本题考查的是垂径定理,根据题意作出辅助线,利用垂径定理求解是解答此题的关键.3、(1);(2)的值为,,.【解析】【分析】(1)由直线BC求出B、C的坐标,再代入二次函数的解析式,求出b、c的值,得出二次函数的解析式;(2)用含有m的代数式表示点E和点F的坐标,用相似三角形对应边成比例的性质列方程,求出m的值.【详解】(1)直线的解析式点,点和在抛物线上,解得:二次函数的解析式为:(2)二次函数与轴交于点、点轴交直线于点点轴,轴,轴交直线于点,点点的坐标为,点的坐标为①若点在原点右侧,如图1,则,即,解得:,;②若点在原点左侧,如图2,则即,解得:,(舍去);综上所述,的值为,,.【考点】本题考查二次函数与几何的综合问题,熟练掌握二次函数的性质是本题的解题关键,解题时结合一次函数的性质,利用相似三角形的性质列方程,灵活应用函数图像上点的坐标特征.4、(1)当时,四边形PQCD为平行四边形;(2)当t=2秒时,PQ与⊙O相切.【解析】【分析】(1)由题意得:,,则,再由四边形PQCD是平行四边形,得到DP=CQ,由此建立方程求解即可;(2)设PQ与⊙O相切于点H过点P作PE⊥BC,垂足为E.先证明四边形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切线长定理得到AP=PH,HQ=BQ,则PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,则122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【详解】解:(1)由题意得:,,∴,∵四边形PQCD是平行四边形,∴DP=CQ,∴,解得,∴当时,四边形PQCD为平行四边形;(2)设PQ与⊙O相切于点H过点P作PE⊥BC,垂足为E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四边形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB为⊙O的直径,∠ABC=∠DAB=90°,∴AD、BC为⊙O的切线,∴AP=PH,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论