2024-2025学年江西省樟树市中考数学全真模拟模拟题附参考答案详解(能力提升)_第1页
2024-2025学年江西省樟树市中考数学全真模拟模拟题附参考答案详解(能力提升)_第2页
2024-2025学年江西省樟树市中考数学全真模拟模拟题附参考答案详解(能力提升)_第3页
2024-2025学年江西省樟树市中考数学全真模拟模拟题附参考答案详解(能力提升)_第4页
2024-2025学年江西省樟树市中考数学全真模拟模拟题附参考答案详解(能力提升)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省樟树市中考数学全真模拟模拟题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、一元二次方程(m+1)x2-2mx+m2-1=0有两个异号根,则m的取值范围是(

)A.m<1 B.m<1且m≠-1C.m>1 D.-1<m<12、下列方程:①;②;③;④;⑤.是一元二次方程的是(

)A.①② B.①②④⑤ C.①③④ D.①④⑤3、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:…-2013……6-4-6-4…下列各选项中,正确的是A.这个函数的图象开口向下B.这个函数的图象与x轴无交点C.这个函数的最小值小于-6D.当时,y的值随x值的增大而增大4、如图,在中,为的直径,和相切于点E,和相交于点F,已知,,则的长为(

)A. B. C. D.25、关于的一元二次方程的两根应为(

)A. B., C. D.二、多选题(5小题,每小题3分,共计15分)1、在中,,,且关于x的方程有两个相等的实数根,以下结论正确的是(

)A.AC边上的中线长为1 B.AC边上的高为C.BC边上的中线长为 D.外接圆的半径是22、下列方程中,有实数根的方程是()A.(x﹣1)2=2 B.(x+1)(2x﹣3)=0C.3x2﹣2x﹣1=0 D.x2+2x+4=03、下列四个命题中正确的是(

)A.与圆有公共点的直线是该圆的切线B.垂直于圆的半径的直线是该圆的切线C.到圆心的距离等于半径的直线是该圆的切线D.过圆直径的端点,垂直于此直径的直线是该圆的切线4、如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+175、二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论中正确的有()A.4a+b=0B.9a+c>﹣3bC.7a﹣3b+2c>0D.若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2E.若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、不透明袋子中装有10个球,其中有3个黄球、5个红球、2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黄球的概率是_______.2、如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是_________.3、抛物线是二次函数,则m=___.4、对任意实数a,b,定义一种运算:,若,则x的值为_________.5、抛物线的开口方向向______.四、解答题(6小题,每小题10分,共计60分)1、已知关于的方程有实根.(1)求的取值范围;(2)设方程的两个根分别是,,且,试求的值.2、解方程(组):(1)(2);(3)x(x-7)=8(7-x).3、已知抛物线过点.(1)求抛物线的解析式;(2)点A在直线上且在第一象限内,过A作轴于B,以为斜边在其左侧作等腰直角.①若A与Q重合,求C到抛物线对称轴的距离;②若C落在抛物线上,求C的坐标.4、冰墩墩是2022年北京冬季奥运会的吉祥物.冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来.某超市用2400元购进一批冰墩墩玩偶出售.若进价降低20%,则可以多买50个.市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.(1)求每个冰墩墩玩偶的进价;(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元.①求w关于x的函数解析式,并求每周总利润的最大值;②当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x的范围.5、在平面直角坐标系中,抛物线的对称轴为.求的值及抛物线与轴的交点坐标;若抛物线与轴有交点,且交点都在点,之间,求的取值范围.6、阅读下面内容,并答题:我们知道,计算n边形的对角线条数公式为n(n-3).如果一个n边形共有20条对角线,那么可以得到方程n(n-3)=20.解得n=8或n=-5(舍去),∴这个n边形是八边形.根据以上内容,问:(1)若一个多边形共有9条对角线,求这个多边形的边数;(2)小明说:“我求得一个n边形共有10条对角线”,你认为小明同学的说法正确吗?为什么?-参考答案-一、单选题1、B【解析】【分析】设方程两根为x1,x2,根据一元二次方程的定义和根与系数的关系求解即可.【详解】解:设方程两根为x1,x2,根据题意得m+1≠0,,解得m<1且m≠-1,∵x1•x2<0,∴Δ>0,∴m的取值范围为m<1且m≠-1.故选:B.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程根与系数的关系.2、D【解析】【分析】根据一元二次方程的定义进行判断.【详解】①该方程符合一元二次方程的定义;②该方程中含有2个未知数,不是一元二次方程;③该方程含有分式,它不是一元二次方程;④该方程符合一元二次方程的定义;⑤该方程符合一元二次方程的定义.综上,①④⑤一元二次方程.故选:D.【考点】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3、C【解析】【分析】利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断.【详解】解:设二次函数的解析式为,依题意得:,解得:,∴二次函数的解析式为=,∵,∴这个函数的图象开口向上,故A选项不符合题意;∵,∴这个函数的图象与x轴有两个不同的交点,故B选项不符合题意;∵,∴当时,这个函数有最小值,故C选项符合题意;∵这个函数的图象的顶点坐标为(,),∴当时,y的值随x值的增大而增大,故D选项不符合题意;故选:C.【考点】本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键.4、C【解析】【分析】首先求出圆心角∠EOF的度数,再根据弧长公式,即可解决问题.【详解】解:如图连接OE、OF,∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°-∠D-∠DFO-∠DEO=30°,∴的长.故选:C.【考点】本题考查切线的性质、平行四边形的性质、弧长公式等知识,解题的关键是求出圆心角的度数,记住弧长公式.5、B【解析】【分析】先把方程化为一般式,再计算判别式的值,然后利用求根公式解方程即可.【详解】x2−3ax+a2=0,△=(−3a)2−4××a2=a2,x=.所以x1=a,x2=a.故答案选B.【考点】本题考查了解一元二次方程,解题的关键是根据公式法解一元二次方程.二、多选题1、BCD【解析】【分析】由根的判别式求出AC=b=4,由勾股定理的逆定理证出△ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出AC的长,利用等积法求出斜边上的高,根据勾股定理求出BC边上的中线,利用直角三角形外接圆的半径是斜边的一半得出外接圆的半径.【详解】∵一元二次方程x2-4x+b=0有两个相等的实数根,∴(-4)2-4b=0,∴b=4.∴AC=4,∴AB2+BC2=AC2,∵△ABC为直角三角形,∵直角三角形斜边上的中线等于斜边的一半的性质,∴AC边上的中线长=2,故A错误;∵ABBC=ACh∴22=4h∴h=故B正确;BC边上的中线==故C正确直角三角形外接圆的半径等于斜边的一半,所以为2故D正确.故答案为:BCD【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ=0,方程有两个相等的实数根;还考查了利用勾股定理判定直角三角形及勾股定理的应用,并考查了直角三角形斜边上的中线等于斜边的一半的性质以及三角形的外接圆的性质.2、ABC【解析】【分析】根据直接开方法可确定A选项正确;根据因式分解法可确定B选项正确;根据方程的判别式,当时,方程有两个不等的实数根,当时,方程有两个相等的实数根,当时,方程无实数根,可判断C选项正确,D选项错误.【详解】A.,解得:,,方程有实数根,A选项正确;B.,解得:,,方程有实数根,B选项正确;C.,,,,方程有实数根,C选项正确;D.,,,,方程无实数根,D选项错误.故选:ABC.【考点】本题考查了一元二次方程根的判断,熟练掌握根的判别式是解题的关键.3、CD【解析】【分析】要正确理解切线的定义:和圆有唯一公共点的直线是圆的切线.掌握切线的判定:①经过半径的外端,且垂直于这条半径的直线,是圆的切线;②到圆心的距离等于半径的直线是该圆的切线.【详解】解:A中,与圆有两个公共点的直线,是圆的割线,故该选项不符合题意;B中,应经过此半径的外端,故该选项不符合题意;C中,根据切线的判定方法,故该选项符合题意;D中,根据切线的判定方法,故该选项符合题意.故选:CD.【考点】本题考查了切线的判定.注意掌握切线的判定定理与切线的定义是解此题的关键.4、ACD【解析】【分析】根据图象左移加,右移减,图象上移加,下移减,可得答案.【详解】解:A、y=x2−1,先向上平移1个单位得到y=x2,再向上平移1个单位可以得到y=x2+1,故A符合题意;B、y=x2+6x+5=(x+3)2−4,右移3个单位,再上移5得到y=x2+1,故B不符合题意;C、y=x2+4x+4=(x+2)2,先向右平移2个单位得到y=(x+2−2)2=x2,再向上平移1个单位得到y=x2+1,故C符合题意;D、y=x2+8x+17=(x+4)2+1,先向右平移2个单位得到y=(x+4−2)2+1,再向右平移1个单位得到y=(x+4−2-2)2+1=x2+1,故D符合题意.故选:ACD.【考点】本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,注意由目标函数图象到原函数图象方向正好相反.5、ABE【解析】【分析】根据抛物线的对称轴为直线x=2,则有4a+b=0,可得A正确;根据二次函数的对称性得到当x=3时,函数值大于0,则9a+3b+c>0,即9a+c>﹣3b,可得B正确;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以7a-3b+2c=9a,再根据抛物线开口向下得a<0,于是有7a﹣3b+2c<0,可得C错误;利用抛物线的对称性得到(﹣3,)在抛物线上,然后利用二次函数的增减性可得D错误;作出直线y=﹣3,然后依据函数图象进行判断可得E正确;综上即可得答案.【详解】A项:∵x==2,∴4a+b=0,故A正确.B项:∵抛物线与x轴的一个交点为(-1,0),对称轴为直线x=2,∴另一个交点为(5,0),∵抛物线开口向下,∴当x=3时,y>0,即9a+3b+c>0,∴9a+c>﹣3b,故B正确.C项:∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0∵b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴7a﹣3b+2c=7a+12a﹣10a=9a,∵抛物线开口向下,∴a<0,∴7a﹣3b+2c<0,故C错误;D项:∵抛物线的对称轴为x=2,C(7,)在抛物线上,∴点(﹣3,)与C(7,)关于对称轴x=2对称,∵A(﹣3,)在抛物线上,∴=,∵﹣3<﹣12,在对称轴的左侧,抛物线开口向下,∴y随x的增大而增大,∴=<,故D错误.E项:方程a(x+1)(x﹣5)=0的两根为x=﹣1或x=5,过y=﹣3作x轴的平行线,直线y=﹣3与抛物线的交点的横坐标为方程的两根,∵<,抛物线与x轴交点为(-1,0),(5,0),∴依据函数图象可知:<﹣1<5<,故E正确.故答案为:ABE【考点】本题考查了二次函数图象与系数的关系:二次函数y=ax²+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b²﹣4ac>0时,抛物线与x轴有2个交点;△=b²﹣4ac=0时,抛物线与x轴有1个交点;△=b²﹣4ac<0时,抛物线与x轴没有交点.三、填空题1、【解析】【分析】用黄球的个数除以总球的个数即可得出取出黄球的概率.【详解】解:∵不透明的袋子中装有10个球,其中有3个黄球、5个红球、2个黑球,∴从袋子中随机取出1个球,则它是黄球的概率为;故答案为:.【考点】此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.2、2【解析】【分析】根据中心对称的性质AD=DE及∠D=90゜,由勾股定理即可求得AE的长.【详解】∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE=,故答案为.【考点】本题考查了中心对称的性质,勾股定理等知识,关键中心对称性质的应用.3、3【解析】【分析】根据二次函数的定义:一般地,形如(a、b、c是常数且a≠0)的函数叫做二次函数,进行求解即可.【详解】解:∵抛物线是二次函数,∴,∴,故答案为:3.【考点】本题主要考查了二次函数的定义,解题的关键在于能够熟知二次函数的定义.4、2或-3##-3或2【解析】【分析】根据题意得到关于x的一元二次方程,解方程即可.【详解】解:∵,∴,∴,解得或,故答案为:2或-3.【考点】本题主要考查了新定义下的实数运算,解一元二次方程,正确理解题意是解题的关键.5、下【解析】【分析】根据二次函数二次项系数的大小判断即可;【详解】∵,∴抛物线开口向下;故答案是下.【考点】本题主要考查了判断抛物线的开口方向,准确分析判断是解题的关键.四、解答题1、(1);(2)不存在【解析】【分析】(1)根据根的判别式即可求出答案.(2)根据根与系数的关系即可求出答案.【详解】解:(1)∵,,,∴,∴;(2)由题意可知:x1+x2=2,x1x2=,∵,∴,∴k=,∵,∴k=不符合题意,舍去,∴k的值不存在.【考点】本题考查了一元二次方程根的判别式,解题的关键是熟练运用根与系数的关系以及根的判别式,本题属于基础题型.2、(1)(2)x=-(3)x1=7,x2=-8【解析】【分析】(1)根据代入消元法,可得方程组的解;(2)根据等式的性质,化为整式方程,根据解整式方程,可得答案;(3)先移项,再提公因式,再求解即可.(1)由①,得y=3x+4③将③代入②,得x-2(3x+4)=-3,解得x=-1,将x=-1代入③,解得y=1.所以原方程组的解为;(2);解:方程两边都乘(x+1)(x-1),得(x-1)2-3=(x+1)(x-1),解得x=-.经检验,x=-是原方程的解.(3)x(x-7)=8(7-x).解:原方程可变形为x(x-7)+8(x-7)=0,(x-7)(x+8)=0.x-7=0,或x+8=0.∴x1=7,x2=-8.【考点】本题考查了解二元一次方程组、分式方程及一元二次方程,利用等式的性质得出整式方程是解题关键,要检验分时方程的根.3、(1);(2)①1;②点C的坐标是【解析】【分析】(1)将两点分别代入,得,解方程组即可;(2)①根据AB=4,斜边上的高为2,Q的横坐标为1,计算点C的横坐标为-1,即到y轴的距离为1;②根据直线PQ的解析式,设点A(m,-2m+6),三角形ABC是等腰直角三角形,用含有m的代数式表示点C的坐标,代入抛物线解析式求解即可.【详解】解:(1)将两点分别代入,得解得.所以抛物线的解析式是.(2)①如图2,抛物线的对称轴是y轴,当点A与点重合时,,作于H.∵是等腰直角三角形,∴和也是等腰直角三角形,∴,∴点C到抛物线的对称轴的距离等于1.②如图3,设直线PQ的解析式为y=kx+b,由,得解得∴直线的解析式为,设,∴,所以.所以.将点代入,得.整理,得.因式分解,得.解得,或(与点P重合,舍去).当时,.所以点C的坐标是.【点评】本题考查了抛物线解析式的确定,一次函数解析式的确定,等腰直角三角形的性质,一元二次方程的解法,熟练掌握待定系数法,灵活用解析式表示点的坐标,熟练解一元二次方程是解题的关键.4、(1)每个冰墩墩钥匙扣的进价为12元(2)①,最大值为1960元;②每个冰墩墩玩偶售价x的范围为:【解析】【分析】(1)设每个冰墩墩钥匙扣的进价为x元,根据题意列出分式方程,进而计算求解即可;(2)①根据题意列出一次函数关系,根据一次函数的性质求得最大利润即可;②根据题意列出方程,根据二次函数的性质求得的范围,根据题意取整数解即可.(1)设每个冰墩墩钥匙扣的进价为x元,由题意得:,解得,经检验,是原方程的解且符合题意,答:每个冰墩墩钥匙扣的进价为12元;(2)①∵且x是大于20的正整数∴当时,w有最大值,最大值为1960元②售价为24元或25元或26元或27元

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论