2024-2025学年河北省定州市中考数学真题分类(勾股定理)汇编综合训练试题(含解析)_第1页
2024-2025学年河北省定州市中考数学真题分类(勾股定理)汇编综合训练试题(含解析)_第2页
2024-2025学年河北省定州市中考数学真题分类(勾股定理)汇编综合训练试题(含解析)_第3页
2024-2025学年河北省定州市中考数学真题分类(勾股定理)汇编综合训练试题(含解析)_第4页
2024-2025学年河北省定州市中考数学真题分类(勾股定理)汇编综合训练试题(含解析)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省定州市中考数学真题分类(勾股定理)汇编综合训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、若a,b为直角三角形的两直角边,c为斜边,下列选项中不能用来证明勾股定理的是(

)A. B.C. D.2、如图,P是等边三角形内的一点,且,,,以为边在外作,连接,则以下结论中不正确的是(

)A. B. C. D.3、下列各组数据为三角形的三边,能构成直角三角形的是(

)A.4,8,7 B.2,2,2 C.2,2,4 D.13,12,54、我图古代数学著作《九章算术》中有这样一个问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?(注:丈、尺是长度单位,1丈=10尺)意思为:如图,有一个边长为1丈的正方形水池,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的岸边,它的顶端恰好碰到池边的水面.则这根芦苇的长度是(

)A.5尺 B.10尺 C.12尺 D.13尺5、《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少(1丈=10尺,1尺=10寸)?若设门的宽为x寸,则下列方程中,符合题意的是()A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12C.x2+1002=(x+68)2 D.x2+(x+68)2=10026、《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为尺,则可列方程为(

)A. B.C. D.7、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(

)A.0.7米 B.1.5米 C.2.2米 D.2.4米第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为______km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为______km.2、如图,在网格中,每个小正方形的边长均为1.点A、B,C都在格点上,若BD是△ABC的高,则BD的长为__________.3、如图,在中,,将线段绕点顺时针旋转至,过点作,垂足为,若,,则的长为__.4、在Rt△ABC中,∠C=90°,AC=9,AB=15,则点C到AB的距离是_______.5、如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D′重合.若BC=8,CD=6,则CF的长为_________________.6、图,在菱形ABCD中,,是锐角,于点E,M是AB的中点,连接MD,若,则的值为______.7、如图,学校有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”,他们仅仅少走了________步路(假设步为米),却踩伤了花草.8、我国古代数学著作《九章算术》中的一个问题:一根竹子高1丈(1丈=10尺),折断后顶端落在离竹子底端3尺处,问折断处离地面的高度为多少尺?如图,设折断处离地面的高度为x尺,根据题意,可列出关于x方程为:__________.三、解答题(7小题,每小题10分,共计70分)1、已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2.求整式B.联想:由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图,填写下表中B的值;直角三角形三边n2﹣12nB勾股数组Ⅰ8勾股数组Ⅱ352、如图,在△ABC和△DEB中,AC∥BE,∠C=90°,AB=DE,点D为BC的中点,.(1)求证:△ABC≌△DEB.(2)连结AE,若BC=4,直接写出AE的长.3、2020年春季“新冠肺炎”在武汉全面爆发,蔓延全国,危及到人民生命安全,为了积极响应国家防控政策,双流区某镇政府采用了移动宣讲的形式进行宣传防控措施,如图,笔直公路的一侧点处有一村庄,村庄到公路的距离为600米,假设宣讲车周围1000米以内能听到广播宣传,宣讲车在公路上沿方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?4、在△ABC中,,AB=5cm,AC=3cm,动点P从点B出发,沿射线BC以1cm/s的速度移动,设运动的时间为t秒,当△ABP为直角三角形时,求t的值.5、阅读下面材料:小明遇到这样一个问题:∠MBN=30°,点A为射线BM上一点,且AB=4,点C为射线BN上动点,连接AC,以AC为边在AC右侧作等边三角形ACD,连接BD.当AC⊥BN时,求BD的长.小明发现:以AB为边在左侧作等边三角形ABE,连接CE,能得到一对全等的三角形,再利用∠EBC=90°,从而将问题解决(如图1).请回答:(1)在图1中,小明得到的全等三角形是△≌△;BD的长为.(2)动点C在射线BN上运动,当运动到AC时,求BD的长;(3)动点C在射线BN上运动,求△ABD周长最小值.6、有一只喜鹊在一棵高3米的小树的树梢上觅食,它的巢筑在距离该树24米,高为14米的一棵大树上,且巢离大树顶部为1米,这时,它听到巢中幼鸟求助的叫声,立刻赶过去,如果它的飞行速度为每秒5米,那么它至少几秒能赶回巢中?7、点P到y轴的距离与它到点A(-8,2)的距离都等于13,求点P的坐标。-参考答案-一、单选题1、A【解析】【分析】由题意根据图形的面积得出的关系,即可证明勾股定理,分别分析即可得出答案【详解】解:A、不能利用图形面积证明勾股定理;B、根据面积得到;C、根据面积得到,整理得;D、根据面积得到,整理得.故选:A.【考点】本题考查勾股定理的证明,熟练掌握利用图形的面积得出的关系,即可证明勾股定理.2、C【解析】【分析】根据△ABC是等边三角形,得出∠ABC=60°,根据△BQC≌△BPA,得出∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,求出∠PBQ=60°,即可判断A;根据勾股定理的逆定理即可判断B;根据△BPQ是等边三角形,△PCQ是直角三角形即可判断D;求出∠APC=150°-∠QPC,和PC≠2QC,可得∠QPC≠30°,即可判断C.【详解】解:∵△ABC是等边三角形,∴∠ABC=60°,∵△BQC≌△BPA,∴∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,所以A正确,不符合题意;PQ=PB=4,PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,所以B正确,不符合题意;∵PB=QB=4,∠PBQ=60°,∴△BPQ是等边三角形,∴∠BPQ=60°,∴∠APB=∠BQC=∠BQP+∠PQC=60°+90°=150°,所以D正确,不符合题意;∠APC=360°-150°-60°-∠QPC=150°-∠QPC,∵PC=5,QC=PA=3,∴PC≠2QC,∵∠PQC=90°,∴∠QPC≠30°,∴∠APC≠120°.所以C不正确,符合题意.故选:C.【考点】本题是三角形综合题,考查了全等三角形的性质、等边三角形的性质、勾股定理的逆定理,解决本题的关键是综合应用以上知识.3、D【解析】【分析】根据勾股定理的逆定理,看较小的两边的平方和是否等于最大的边的平方即可进行判断.【详解】A、42+72≠82,故不能构成直角三角形;B、22+22≠22,故不能构成直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形,故选D.【考点】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.4、D【解析】【分析】依题意,芦苇的长度为直角三角形的斜边,水深为一直角边,另一直角边为5尺,由勾股定理即可列出方程,进而得到答案.【详解】解:设水深x尺,则芦苇的长度为(x+1)尺,依题意,由勾股定理,得:,解得,所以芦苇的长度为13尺.故选D.【考点】本题考查勾股定理的应用,将题目描述问题转化成直角三角形求边长的问题是解题的关键.5、D【解析】【分析】1丈=100寸,6尺8寸=68寸,设门的宽为x寸,则门的高度为(x+68)寸,利用勾股定理及门的对角线长1丈(100寸),即可得出关于x的一元二次方程,此题得解.【详解】解:1丈=100寸,6尺8寸=68寸.设门的宽为x寸,则门的高度为(x+68)寸,依题意得:x2+(x+68)2=1002.故选:D.【考点】本题主要考查了勾股定理的应用、由实际问题抽象出一元二次方程,准确计算是解题的关键.6、D【解析】【分析】先画出三角形,根据勾股定理和题目设好的未知数列出方程.【详解】解:如图,根据题意,,,设折断处离地面的高度是x尺,即,根据勾股定理,,即.故选:D.【考点】本题考查勾股定理的方程思想,解题的关键是根据题意利用勾股定理列出方程.7、C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.【考点】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.二、填空题1、

20

13【解析】【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x的值.【详解】(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.故答案为(1)20;(2)13.【考点】本题考查了勾股定理,解题的关键是根据A、B、C三点的坐标求出相关线段的长度,本题属于中等题型.2、##【解析】【分析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.【详解】】解:由勾股定理得:AC=,∵S△ABC=3×4-×1×2-×3×2-×2×4=4,∴AC•BD=4,∴×2BD=4,∴BD=,故答案为:.【考点】本题考查了勾股定理,三角形的面积的计算,掌握勾股定理是解题的关键.3、【解析】【分析】过作,为垂足,通过已知条件可以求得,,从而求得,再根据直角三角形的性质,即可求解.【详解】解:过作,为垂足,,又,,又,,在与中,,,,∴,在中,,设,则由勾股定理可得即解得故答案为.【考点】此题主要考查了三角形全等的证明方法和直角三角形的有关性质,利用已知条件合理构造直角三角形是解决本题的关键.4、【解析】【分析】首先根据勾股定理求出直角边BC的长,再根据三角形的面积为定值即可求出则点C到AB的距离【详解】在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC⋅BC=AB⋅h,∴h==故答案为【考点】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键5、【解析】【分析】设,在中利用勾股定理求出x即可解决问题.【详解】解:∵是的中点,,,∴,由折叠的性质知:,设,则,在中,根据勾股定理得:,即:,解得,∴.故答案为:【考点】本题考查翻折变换、勾股定理,解题的关键是利用翻折不变性解决问题,学会转化的思想,利用方程的去思考问题,属于中考常考题型.6、【解析】【分析】延长DM交CB的延长线于点首先证明,设,利用勾股定理构建方程求出x即可解决问题.【详解】延长DM交CB的延长线于点H,四边形ABCD是菱形,,,,,,≌,,,,设,,,,,,或舍弃,,故答案为.【考点】本题考查了菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,正确添加辅助线,构造全等三角形解决问题是解决本题的关键.7、【解析】【分析】少走的距离是AC+BC-AB,在直角△ABC中根据勾股定理求得AB的长即可.【详解】解:如图,∵在中,,∴米,则少走的距离为:米,∵步为米,∴少走了步.故答案为:.【考点】本题考查正确运用勾股定理.善于观察题目的信息,掌握勾股定理是解题的关键.8、【解析】【分析】设折断处离地面的高度为x尺,根据勾股定理列出方程即可【详解】解:设折断处离地面的高度为x尺,根据题意可得:故答案为:【考点】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.三、解答题1、A=(n2+1)2,B=n2+1,15,17;12,37【解析】【分析】先根据整式的混合运算法则求出A,进而求出B,再把n的值代入即可解答.【详解】A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,n2﹣1=42﹣1=15,n2+1=42+1=17;当n2﹣1=35时,n=±6(负值舍去),2n=2×6=12,n2+1=37.直角三角形三边n2﹣12nB勾股数组Ⅰ15817勾股数组Ⅱ351237故答案为:15,17;12,37.【考点】本题考查了勾股数的定义及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.2、(1)见解析;(2)【解析】【分析】(1)根据平行可得∠DBE=90°,再由HL定理证明直角三角形全等即可;(2)构造,利用矩形性质和勾股定理即可求出AE长.【详解】(1)∵AC∥BE,∴∠C+∠DBE=180°.∴∠DBE=180°-∠C=180°-90°=90°.∴△ABC和△DEB都是直角三角形.∵点D为BC的中点,,∴AC=DB.

∵AB=DE,∴Rt△ABC≌Rt△DEB(HL).(2).过程如下:连接AE、过A点作AH⊥BE,∵∠C=90°,∠DBE=90°.∴,,∴AH=BC=4,,∴,在中,.【考点】本题主要考查了直角三角形全等的判定和勾股定理解三角形,解题关键是构造直角三角形,利用用平行线间的距离处处相等得线段AH=BC,从而利用勾股定理求AE.3、(1)村庄能听到宣传,理由见解析;(2)村庄总共能听到8分钟的宣传.【解析】【分析】(1)直接比较村庄到公路的距离和广播宣传距离即可;(2)过点作于点,利用勾股定理运算出广播影响村庄的路程,再除以速度即可得到时间.【详解】解:(1)村庄能听到宣传,理由:∵村庄到公路的距离为600米1000米,∴村庄能听到宣传;(2)如图:过点作于点,假设当宣讲车行驶到点开始影响村庄,行驶点结束对村庄的影响,则米,米,∴(米),∴米,∴影响村庄的时间为:(分钟),∴村庄总共能听到8分钟的宣传.【考点】本题主要考查了垂线的性质,勾股定理,仔细审题获取相关信息合理作出图形是解题的关键.4、当△ABP为直角三角形时,t=4或.【解析】【分析】当△ABP为直角三角形时,分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时t的值即可.【详解】在Rt△ABC中,由勾股定理得:,∴BC=4cm,由题意得:BP=tcm.,①当∠APB为直角时,如图①,点P与点C重合,BP=BC=4cm,∴t=4;②当∠BAP为直角时,如图②,BP=tcm.CP=(t-4)cm,AC=3cm,在Rt△ACP中,,在Rt△BAP中,,即,解得,答:当△ABP为直角三角形时,t=4或.【考点】本题考查了勾股定理以及直角三角形的知识,解答本题的关键是掌握勾股定理的应用,以及分类讨论,否则会出现漏解.5、(1)ABD,ACE,;(2)BD的长为;(3)+4.【解析】【分析】(1)根据SAS可证△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的长度;(2)作AH⊥BC于点H,以AB为边在左侧作等边△ABE,连接CE,求出BH,HC即BC的长度,再利用勾股定理即可求出CE的长度,由(1)知BD=CE,据此得解;(3)作AH⊥BC于点H,以AB为边在左侧作等边△ABE,延长EB至F,使BF=EB,连接AF交BN于C',连接EC',此时BD+AC'有最小值即为AF,此时△ABD周长=AF+AB最小,求出AF即可.(1)解:∵△ACD和△ABE是等边三角形,∴∠EAB=∠DAC=60°,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△ABD和△AEC中,,∴△ABD≌△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论