




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武穴市中考数学高频难、易错点题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、关于函数,下列说法:①函数的最小值为1;②函数图象的对称轴为直线x=3;③当x≥0时,y随x的增大而增大;④当x≤0时,y随x的增大而减小,其中正确的有()个.A.1 B.2 C.3 D.42、如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,过点C作⊙O的切线,交AB的延长线于点D.设∠A=α,∠D=β,则()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°3、将一元二次方程化成(a,b为常数)的形式,则a,b的值分别是(
)A.,21 B.,11 C.4,21 D.,694、关于的方程有两个不相等的实根、,若,则的最大值是(
)A.1 B. C. D.25、从下列命题中,随机抽取一个是真命题的概率是(
)(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)两条对角线长分别为6和8的菱形的周长是40.A. B. C. D.1二、多选题(5小题,每小题3分,共计15分)1、下列图案中,是中心对称图形的是(
)A. B. C. D.2、下列命题正确的是(
)A.垂直于弦的直径平分弦所对的两条弧 B.弦的垂直平分线经过圆心C.平分弦的直径垂直于弦 D.平分弦所对的两条弧的直线垂直于弦3、下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行了旋转变换的是(
)组,进行轴对称变换的是(
).A. B. C. D.4、二次函数的部分图象如图所示,图象过点(-3,0),对称轴为.下列结论正确的是(
)A.B.C.D.若(-5,),(2,)是抛物线上两点,则5、如图,二次函败y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的交点的横坐标分别为﹣1、3,则下列结论中正确的有()A.abc<0 B.2a+b=0 C.3a+2c>0 D.对于任意x均有ax2﹣a+bx﹣b≥0第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是_____.(只填序号)2、将抛物线沿直线方向移动个单位长度,若移动后抛物线的顶点在第一象限,则移动后抛物线的解析式是__________.3、一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是_____.4、如图,在甲,,,,以点为圆心,的长为半径作圆,交于点,交于点,阴影部分的面积为__________(结果保留).5、抛物线的图象和轴有交点,则的取值范围是______.四、解答题(6小题,每小题10分,共计60分)1、渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润元与降价元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?2、已知关于x的一元二次方程有两个实数根.(1)求k的取值范围;(2)若,求k的值.3、若二次函数图像经过,两点,求、的值.4、用适当的方法解方程:(1)(1-x)2-2(x-1)-35=0;(2)x2+4x-2=0.5、已知,是一元二次方程的两个实数根.(1)求k的取值范围;(2)是否存在实数k,使得等式成立?如果存在,请求出k的值,如果不存在,请说明理由.6、如图,矩形ABCD中,AB=2cm,BC=3cm,点E从点B沿BC以2cm/s的速度向点C移动,同时点F从点C沿CD以1cm/s的速度向点D移动,当E,F两点中有一点到达终点时,另一点也停止运动.当△AEF是以AF为底边的等腰三角形时,求点E运动的时间.-参考答案-一、单选题1、B【解析】【分析】根据所给函数的顶点式得出函数图象的性质从而判断选项的正确性.【详解】解:∵,∴该函数图象开口向上,有最小值1,故①正确;函数图象的对称轴为直线,故②错误;当x≥0时,y随x的增大而增大,故③正确;当x≤﹣3时,y随x的增大而减小,当﹣3≤x≤0时,y随x的增大而增大,故④错误.故选:B.【考点】本题考查二次函数的性质,解题的关键是能够根据函数解析式分析出函数图象的性质.2、C【解析】【分析】连接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切线,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【详解】连接OC,如图,∵⊙O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故选:C.【考点】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质.3、A【解析】【分析】根据配方法步骤解题即可.【详解】解:移项得,配方得,即,∴a=-4,b=21.故选:A【考点】本题考查了配方法解一元二次方程,解题关键是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方.4、D【解析】【分析】根据一元二次方程根与系数的关系,求得两根之和和两根之积,再根据两根关系,求得系数的关系,代入代数式,配方法化简求值即可.【详解】解:由方程有两个不相等的实根、可得,,,∵,可得,,即化简得则故最大值为故选D【考点】此题考查了一元二次方程根与系数的关系,涉及了配方法求解代数式的最大值,根据一元二次方程根与系数的关系得到系数的关系是解题的关键.5、C【解析】【分析】分别判断各命题的真假,再利用概率公式求解.【详解】(1)无理数都是无限小数,是真命题,(2)因式分解,是真命题,(3)棱长是的正方体的表面展开图的周长一定是,是真命题,(4)菱形的对角线长为6和8根据菱形的性质,对角线互相垂直且平分,利用勾股定理可求得菱形的边长为5,则菱形的周长为,是假命题则随机抽取一个是真命题的概率是,故选:C.【考点】本题考查了命题的真假,概率,菱形的性质,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.二、多选题1、ABD【解析】【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这个图形就是中心对称图形,根据定义判断即可.【详解】、是中心对称图形,选项正确;B、是中心对称图形,选项正确;C、不是中心对称图形,选项错误;D、是中心对称图形,选项正确.故选:ABD【考点】本题考查中心对称图形的定义,牢记定义是解题关键.2、ABD【解析】【分析】根据垂径定理及其推论进行判断即可.【详解】A、垂直于弦的直径平分弦所对的两条弧,正确;B、弦的垂直平分线经过圆心,正确;C、平分弦(不是直径)的直径垂直于弦,故错误;D、平分弦所对的两条弧的直线垂直于弦,正确;故选ABD.【考点】本题考查了垂径定理:熟练掌握垂径定理及其推论是解决问题的关键.3、AC【解析】【分析】旋转是一个图形绕着一个定点旋转一定的角度,各对应点之间的位置关系也保持不变;在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴.据此即可解答.【详解】由旋转是一个图形绕着一个定点旋转一定的角度,各对应点之间的位置关系也保持不变,分析可得,进行旋转变换的是A;左边图形能轴对称变换得到右边图形,则进行轴对称变换的是C;根据平移是将一个图形从一个位置变换到另一个位置,各对应点间的连线平行,分析可得,D是平移变化;故答案为:A;C.【考点】本题考查了几何变换的定义,注意结合几何变换的定义,分析图形的位置的关系,特别是对应点之间的关系.4、ABD【解析】【分析】利用抛物线开口方向得到a>0,利用对称轴方程得到b=2a>0,利用抛物线与y轴的交点位置得到c<0,则可对A进行判断;利用b=2a可对B进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(1,0),所以x=2时,y>0,则可对C进行判断;利用二次函数的性质对D进行判断.【详解】解:A.∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a>0,∵抛物线与y轴的交点坐标在x轴下方,∴c<0,∴abc<0,故选项正确,符合题意;B.∵b=2a,∴2a﹣b=0,故选项正确,符合题意;C.∵抛物线与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点坐标为(1,0),∴当x=2时,y>0,∴4a+2b+c>0,故选项错误,不符合题意;D.∵点(﹣5,y1)到直线x=﹣1的距离比点(2,y2)到直线x=﹣1的距离大,∴y1>y2,故选项正确,符合题意.故选:ABD.【考点】此题考查了二次函数的图像和性质,熟练掌握二次函数的图像和性质是基础,数形结合是解决问题的关键.5、BD【解析】【分析】由抛物线开口方向得到a>0,利用抛物线与x轴的交点问题和抛物线的对称性得到抛物线的对称轴为直线x=1,即-=1,所以b=-2a<0,利用抛物线与y轴的交点位置得到c<0,则可对A进行判断;利用b=-2a可对B进行判断;由于x=-1时,y=0,所以a-b+c=0,则c=-3a,3a+2c=-3a<0,于是可对C进行判断;根据二次函数性质,x=1时,y的值最小,所以a+b+c≤ax2+bx+c,于是可对D进行判断.【详解】解:∵抛物线开口向上,∴a>0,∵抛物线与x轴的交点的坐标分别为(-1,0),(3,0),∴抛物线的对称轴为直线x=1,即-=1,∴b=-2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以A错误;∵b=-2a,∴2a+b=0,所以B正确;∵x=-1时,y=0,∴a-b+c=0,即a+2a+c=0,∴c=-3a,∴3a+2c=3a-6a=-3a<0,所以C错误;∵x=1时,y的值最小,∴对于任意x,a+b+c≤ax2+bx+c,即ax2-a+bx-b≥0,所以D正确.故选:BD.【考点】本题考查了二次函数与不等式(组):函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围;利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.三、填空题1、②【解析】【分析】仿造案例,构造面积是的大正方形,由它的面积为,可求出,此题得解.【详解】解:即,构造如图②中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.故答案为②.【考点】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键.2、【解析】【分析】设抛物线沿直线方向移动个单位长度后顶点坐标为(t,3t),再求出平移后的顶点坐标,最后求出平移后的函数关系式.【详解】设抛物线沿直线方向移动个单位长度后顶点坐标为(t,3t),∴,解得:t=1或t=-1(舍去),∴平移后的顶点坐标为(1,3),∴移动后抛物线的解析式是.故答案为:.【考点】本题考查二次函数的图象变换及一次函数的图像,解题的关键是正确理解图象变换的条件,本题属于基础题型.3、60π【解析】【分析】利用圆锥的侧面积公式:,求出圆锥的母线即可解决问题.【详解】解:圆锥的母线,∴圆锥的侧面积=π×10×6=60π,故答案为:60π.【考点】本题考查了圆锥的侧面积,勾股定理等知识,解题的关键是记住圆锥的侧面积公式.4、【解析】【分析】连接BE,根据正切的定义求出∠A,根据扇形面积公式、三角形的面积公式计算即可.【详解】解:连接BE,在Rt△ABC中,∠ABC=90°,∴tanA=,∴∠A=60°,∵BA=BE,∴△ABE为等边三角形,∴∠ABE=30°,∴∠EBC=30°,∴阴影部分的面积=×2×2×+=故答案为.【考点】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式是解题的关键.5、且【解析】【分析】由题意知,,计算求解即可.【详解】解:由题意知,解得故答案为:且.【考点】本题考查了二次函数与轴的交点个数.解题的关键在于熟练掌握二次函数与轴的交点个数.四、解答题1、(1),9600;(2)降价4元,最大利润为9800元;(3)43【解析】【分析】(1)若降价元,则每天销量可增加千克,根据利润公式求解并整理即可得到解析式,然后代入求出对应函数值即可;(2)将(1)中的解析式整理为顶点式,然后利用二次函数的性质求解即可;(3)令可解出对应的的值,然后根据“让利于民”的原则选择合适的的值即可.【详解】(1)若降价元,则每天销量可增加千克,∴,整理得:,当时,,∴每天的利润为9600元;(2),∵,∴当时,取得最大值,最大值为9800,∴降价4元,利润最大,最大利润为9800元;(3)令,得:,解得:,,∵要让利于民,∴,(元)∴定价为43元.【考点】本题考查二次函数的实际应用,弄清数量关系,准确求出函数解析式并熟练掌握二次函数的性质是解题关键.2、(1);(2)【解析】【分析】(1)根据建立不等式即可求解;(2)先提取公因式对等式变形为,再结合韦达定理求解即可.【详解】解:(1)由题意可知,,整理得:,解得:,∴的取值范围是:.故答案为:.(2)由题意得:,由韦达定理可知:,,故有:,整理得:,解得:,又由(1)中可知,∴的值为.故答案为:.【考点】本题考查了一元二次方程判别式、根与系数的关系、韦达定理、一元二次方程的解法等知识点,当>0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当<0时,方程没有实数根.3、b=-3,c=-4.【解析】【分析】将,代入中,求解二元一次方程组即可解题.【详解】解:将,代入中得,解得:∴b=-3,c=-4.【考点】本题考查了含参数的二次函数的求解,属于简单题,熟悉求解二元一次方程组的方法是解题关键.4、(1)x1=8,x2=-4(2)x1=-2,x2=--2【解析】【分析】(1)用分解因式的方法解答,分解因式用十字相乘法分解;(2)用配方法解答,配
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 通辽市中医院护理操作示范考核
- 秦皇岛市中医院财务信息系统HRP凭证处理与报表取数考核
- 长治市中医院教学改革研究考核
- 忻州市中医院躁动患者PICC管理考核
- 中国溴乙酸甲酯项目创业计划书
- 衡水市中医院介入放射科副主任医师资格评审
- 唐山市中医院急诊手术准备考核
- 保定市中医院护理科研评估总结考核
- 北京市人民医院老年护理安全管理制度考核
- 中国没食子酸甲酯项目创业计划书
- 2025年共青团入团积极分子结业考试题库及答案
- 2025年绩效管理自考试题和答案
- 高三试卷:山东省名校考试联盟2024-2025学年高三上学期期中考试化学+答案
- 2024年全国统计师之初级统计基础理论及相关知识考试快速提分卷(附答案)
- 土地法律知识培训内容课件
- 2025年湖北省荆门市辅警考试题库(附答案)
- 2025西南证券股份有限公司校园招聘300人笔试历年参考题库附带答案详解
- 气象科研课题申报书
- 人工智能+开放共享城市安全监控数据共享分析报告
- 2023年中级统计师《统计工作实务》试题真题及答案
- 业务招待费培训课件
评论
0/150
提交评论