2024-2025学年度湖南省常宁市中考数学经典例题含完整答案详解【夺冠】_第1页
2024-2025学年度湖南省常宁市中考数学经典例题含完整答案详解【夺冠】_第2页
2024-2025学年度湖南省常宁市中考数学经典例题含完整答案详解【夺冠】_第3页
2024-2025学年度湖南省常宁市中考数学经典例题含完整答案详解【夺冠】_第4页
2024-2025学年度湖南省常宁市中考数学经典例题含完整答案详解【夺冠】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省常宁市中考数学经典例题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、下列一元二次方程中,有两个不相等实数根的是(

)A. B.x2+2x+4=0 C.x2-x+2=0 D.x2-2x=02、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()A. B.C. D.3、如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接.下列结论一定正确的是(

)A. B. C. D.4、一元二次方程配方后可化为(

)A. B.C. D.5、用配方法解方程时,原方程应变形为(

)A. B. C. D.二、多选题(5小题,每小题3分,共计15分)1、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的有()A.2a+b<0 B.abc>0 C.4a﹣2b+c>0 D.a+c>02、已知点,下面的说法正确的是(

)A.点与点关于轴对称,则点的坐标为B.点绕原点按顺时针方向旋转后到点,则点的坐标为C.点与点关于原点中心对称,则点的坐标为D.点先向上平移个单位,再向右平移个单位到点,则点的坐标为3、以图①(以点O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图②的有(

)A.只要向右平移1个单位 B.先以直线为对称轴进行翻折,再向右平移1个单位C.先绕着点O旋转,再向右平移1个单位 D.绕着的中点旋转即可4、已知抛物线上部分点的横坐标x与纵坐标y的对应值如表所示,对于下列结论:x…-10123…y…30-1m3…①抛物线开口向下;②抛物线的对称轴为直线;③方程的两根为0和2;④当时,x的取值范围是或.正确的是(

)A.① B.② C.③ D.④5、运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线.不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论正确的是(

)A.足球距离地面的最大高度为20mB.足球飞行路线的对称轴是直线C.足球被踢出9s时落地D.足球被踢出1.5s时,距离地面的高度是11m第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,在中,,,则图中阴影部分的面积是_________.(结果保留)2、如图,在正方形网格中,格点绕某点顺时针旋转角得到格点,点与点,点与点,点与点是对应点,则_____度.3、若函数图像与x轴的两个交点坐标为和,则__________.4、如图,四边形内接于,若,则_______°.5、《九章算术》是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多尺,门的对角线长尺,那么门的高和宽各是多少?如果设门的宽为尺,根据题意,那么可列方程___________.四、解答题(6小题,每小题10分,共计60分)1、已知关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都为正整数,求这个方程的根.2、解方程:(1)x2-x-2=0;(2)3x(x-2)=2-x.3、在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)4、某水果店标价为10元/kg的某种水果经过两次降价后价格为8.1元/kg,并且两次降价的百分率相同.时间/天x销量/kg120-x储藏和损耗费用/元3x2-64x+400(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示,已知该水果的进价为4.1元/kg,设销售该水果第x天(1≤x<10)的利润为377元,求x的值.5、顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.6、解关于y的方程:by2﹣1=y2+2.-参考答案-一、单选题1、D【解析】【分析】逐一分析四个选项中方程的根的判别式的符号,由此即可得出结论.【详解】A.此方程判别式,方程有两个相等的实数根,不符合题意;B.此方程判别式方程没有实数根,不符合题意;C.此方程判别式,方程没有实数根,不符合题意;D.此方程判别式,方程有两个不相等的实数根,符合题意;故答案为:D.【考点】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.2、D【解析】【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D.【考点】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.3、D【解析】【分析】利用旋转的性质得AC=CD,BC=EC,∠ACD=∠BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出,所以选项D正确;再根据∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB判断选项B不一定正确即可.【详解】解:∵绕点顺时针旋转得到,∴AC=CD,BC=EC,∠ACD=∠BCE,∴∠A=∠CDA=;∠EBC=∠BEC=,∴选项A、C不一定正确,∴∠A=∠EBC,∴选项D正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB不一定等于,∴选项B不一定正确;故选D.【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.4、B【解析】【分析】根据题意直接对一元二次方程配方,然后把常数项移到等号右边即可.【详解】解:根据题意,把一元二次方程配方得:,即,∴化成的形式为.故选:B.【考点】本题考查配方法解一元二次方程,注意掌握配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5、D【解析】【分析】移项,配方,变形后即可得出选项.【详解】解:x2-4x=1,x2-4x+4=1+4,∴(x-2)2=5,故选:D.【考点】本题考查了解一元二次方程,能够正确配方是解此题的关键.二、多选题1、AD【解析】【分析】结合图象,根据函数的开口方向、与y轴的交点、对称轴的位置、和当x=-2时,x=-1时,对应y值的大小依次可判断.【详解】解:根据开口方向可知,根据图象与y轴的交点可知,根据对称轴可知:,∴,∴,,故A选项正确;∴abc<0,故B选项错误;根据图象可知,当x=-2时,,故C选项错误;根据图象可知,当x=-1时,,∴,故D选项正确.故选:AD.【考点】本题考查了二次函数图象判定式子的正负.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点确定,注意特殊点的函数值.2、BD【解析】【分析】A、根据轴对称的性质判断即可;B、根据旋转变换的性质判断即可;C、根据中心对称的性质判断即可;D、根据平移变换的性质判断即可;【详解】A、点A与点B关于轴对称,则点B的坐标为B(-2,-3),A选项错误,不符合题意;B、点绕原点按顺时针方向旋转后到点,则点的坐标为,B选项正确,符合题意;C、点与点关于原点中心对称,则点的坐标为B(2,-3),C选项错误,不符合题意;D、点先向上平移个单位,再向右平移个单位到点,则点的坐标为,D选项正确,符合题意;故选:BD【考点】本题考查平移变换,轴对称变换,中心对称,旋转变换等知识,解题的关键是熟练掌握平移变换,旋转变换,轴对称变换,中心对称的性质,属于常考题型.3、BCD【解析】【分析】观察两个半圆的位置关系,再确定能否通过图象变换得到,以及旋转、平移的方法.【详解】解:由图可知,图(1)先以直线AB为对称轴进行翻折,再向右平移1个单位,或先绕着点O旋转180°,再向右平移1个单位,或绕着OB的中点旋转180°即可得到图(2)故选BCD【考点】本题考查了旋转、轴对称、平移的性质.关键是根据变换图形的位置关系,确定变换规律.4、CD【解析】【分析】根据表格可知直线x=1是抛物线对称轴,此时有最小值,与x轴交点坐标为(0,0)(2,0)据此可判断①②③,根据与x轴交点坐标结合开口方向可判断④.【详解】解:从表格可以看出,函数的对称轴是直线x=1,顶点坐标为(1,﹣1),此时有最小值∴函数与x轴的交点为(0,0)、(2,0),∴抛物线y=ax2+bx+c的开口向上故①错误;抛物线y=ax2+bx+c的对称轴为直线x=1故②错误;方程ax2+bx+c=0的根为0和2故③正确;当y>0时,x的取值范围是x<0或x>2故④正确;故选CD.【考点】本题考查了二次函数的图象和性质.解题的关键在于根据表格获取正确的信息.5、BC【解析】【分析】由题意,抛物线经过(0,0),(9,0),所以可以假设抛物线的解析式为h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判断.【详解】解:由题意,抛物线的解析式为h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故A错误,∴抛物线的对称轴t=4.5,故B正确,∵t=9时,h=0,∴足球被踢出9s时落地,故C正确,∵t=1.5时,h=11.25,故D错误.∴正确的有②③,故选:BC【考点】本题考查二次函数的应用、求出抛物线的解析式是解题的关键,属于中考常考题型.三、填空题1、【解析】【分析】由,根据圆周角定理得出,根据S阴影=S扇形AOB-可得出结论.【详解】解:∵,∴,∴S阴影=S扇形AOB-,故答案为:.【考点】本题主要考查圆周角定理、扇形的面积计算,根据题意求得三角形与扇形的面积是解答此题的关键.2、【解析】【分析】先连接,,作,的垂直平分线交于点,连接,,再由题意得到旋转中心,由旋转的性质即可得到答案.【详解】如图,连接,,作,的垂直平分线交于点,连接,,∵,的垂直平分线交于点,∴点是旋转中心,∵,∴旋转角.故答案为.【考点】本题考查旋转,解题的关键是掌握旋转的性质.3、-2【解析】【分析】根据二次函数图象对称轴所在的直线与x轴的交点的坐标,即为它的图象与x轴两交点之间线段中点的横坐标,即可求得.【详解】解:函数图像与x轴的两个交点坐标为和由对称轴所在的直线为:解得故答案为:-2.【考点】本题考查了二次函数的性质及中点坐标的求法,熟练掌握和运用二次函数的性质及中点坐标的求法是解决本题的关键.4、104【解析】【分析】根据圆内接四边形的对角互补列式计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∴∠C=180°﹣∠A=180°﹣76°=104°,故答案为:104.【考点】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.5、或【解析】【分析】设门的宽为x尺,则门的高为(x+6)尺,利用勾股定理,即可得出关于x的一元二次方程,此题得解.【详解】解:设门的宽为x尺,则门的高为(x+6)尺,依题意得:即或.故答案为:或.【考点】本题考查了由实际问题抽象出一元二次方程以及勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.四、解答题1、证明见祥解;.【解析】【分析】(1)先求出判别式,再配方变为即可;(2)用十字相乘法可以求出根的表达式,方程的两个实数根都为正整数,列不等式组,即可得出m的值.【详解】证明:∵是关于的一元二次方程,,∴此方程总有两个实数根.解:∵,∴,∴,.∵方程的两个实数根都为正整数,,解得,,∴..【考点】本题考查了根的判别式,配方为平方式,根据方程的两个实数根都为正整数,列出不等式组,求出是解题的关键.2、(1)x1=2,x2=-1(2)x1=-,x2=2【解析】【分析】(1)利用因式分解法解方程;(2)利用因式分解法解方程;(1)解:x2-x-2=0,(x-2)(x+1)=0,x-2=0或x+1=0,x1=2,x2=-1.(2)解:3x(x-2)=2-x,3x(x-2)+(x-2)=0,(3x+1)(x-2)=0,3x+1=0或x-2=0,x1=-,x2=2.【考点】本题考查了因式分解法解一元二次方程:将方程的右边化为零,把方程的左边分解为两个一次因式的积,令每个因式分别为零,解这两个一元一次方程,它们的解就是原方程的解.3、见解析.【解析】【分析】根据轴对称图形和旋转对称图形的概念作图即可得.【详解】解:根据剪掉其中两个方格,使之成为轴对称图形;即如图所示:【考点】本题主要考查利用旋转设计图案,解题的关键是掌握轴对称图形和旋转对称图形的概念.4、(1)10%(2)9【解析】【分析】(1)设该水果每次降价的百分率为y,根据题意列出一元二次方程即可求解;(2)根据题意列出一元二次方程即可求解.(1)设该水果每次降价的百分率为y,依题意,得10(1-y)2=8.1,解得y1=0.1=10%,y2=1.9(不合题意,舍去).答:该水果每次降价的百分率为10%.(2)依题意,得,解得x1=9,x2=11(舍去).答:x的值为9.【考点】本题考查了一元二次方程的应用,准确理解题意列出一元二次方程是解答本题的关键.5、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;当x=时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】【分析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.【详解】(1)将点E代入直线解析式中,0=﹣×4+m,解得m=3,∴解析式为y=﹣x+3,∴C(0,3),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论