版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省泰兴市中考数学试题预测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为()A.105° B.120° C.135° D.150°2、设方程的两根分别是,则的值为(
)A.3 B. C. D.3、若m,n是方程x2-x-2022=0的两个根,则代数式(m2-2m-2022)(-n2+2n+2022)的值为(
)A.2023 B.2022 C.2021 D.20204、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为(
)A. B. C. D.5、下列事件中,是必然事件的是()A.实心铁球投入水中会沉入水底B.车辆随机到达一个路口,遇到红灯C.打开电视,正在播放《大国工匠》D.抛掷一枚硬币,正面向上二、多选题(5小题,每小题3分,共计15分)1、下列关于圆的叙述正确的有()A.对角互补的四边形是圆内接四边形B.圆的切线垂直于圆的半径C.正多边形中心角的度数等于这个正多边形一个外角的度数D.过圆外一点所画的圆的两条切线长相等2、如图,是半圆的直径,半径于点,为半圆上一点,,与交于点,连接,,给出以下四个结论,其中正确的是(
)A.平分 B. C. D.3、如图,在的网格中,点,,,,均在网格的格点上,下面结论正确的有(
)A.点是的外心 B.点是的外心C.点是的外心 D.点是的外心4、在图所示的4个图案中不包含图形的旋转的是(
)A. B. C. D.5、下列四个说法中,不正确的是(
)A.一元二次方程有实数根B.一元二次方程有实数根C.一元二次方程有实数根D.一元二次方程x2+4x+5=a(a≥1)有实数根第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,抛物线的图象与坐标轴交于点、、,顶点为,以为直径画半圆交轴的正半轴于点,圆心为,是半圆上的一动点,连接,是的中点,当沿半圆从点运动至点时,点运动的路径长是__________.2、关于的方程有两个不相等的实数根,则的取值范围是________.3、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.4、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分的面积为_____.5、如图,与x轴交于、两点,,点P是y轴上的一个动点,PD切于点D,则△ABD的面积的最大值是________;线段PD的最小值是________.四、简答题(2小题,每小题10分,共计20分)1、为了测量大楼顶上(居中)避雷针BC的长度,在地面上点A处测得避雷针底部B和顶部C的仰角分别为55°58′和57°,已知点A与楼底中间部位D的距离约为80米,求避雷针BC的长度.(参考数据:sin55°58′≈0.83,cos55°58′≈0.56,tan55°58′≈1.48,sin57°≈0.84,tan57°≈1.54)2、如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,点O在射线AC上(点O不与点A重合),垂足为D,以点O为圆心,分别交射线AC于E、F两点,设OD=x.(1)如图1,当点O为AC边的中点时,求x的值;(2)如图2,当点O与点C重合时,连接DF;求弦DF的长;(3)当半圆O与BC无交点时,直接写出x的取值范围.五、解答题(4小题,每小题10分,共计40分)1、某商家销售一批盲盒,每一个看上去无差别的盲盒内含有A,B,C,D四种玩具中的一种,抽到玩具B的有关统计量如表所示:抽盲盒总数50010001500200025003000频数130273414566695843频率0.2600.2730.2760.2830.2780.281(1)估计从这批盲盒中任意抽取一个是玩具B的概率是;(结果保留小数点后两位)(2)小明从分别装有A,B,C,D四种玩具的四个盲盒中随机抽取两个,请利用画树状图或列表的方法,求抽到的两个玩具恰为玩具A和玩具C的概率.2、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=∠O.已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=.(1)求弦AC的长.(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.(3)当OE=1时,求点A与点D之间的距离(直接写出答案).3、4张相同的卡片上分别写有数字0、1、、3,将卡片的背面朝上,洗后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.(1)第一次抽取的卡片上数字是非负数的概率为______;(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)4、如图1,在平面直角坐标系中,二次函数的图象经过点,过点A作轴,做直线AC平行x轴,点D是二次函数的图象与x轴的一个公共点(点D与点O不重合).(1)求点D的横坐标(用含b的代数式表示)(2)求的最大值及取得最大值时的二次函数表达式.(3)在(2)的条件下,如图2,P为OC的中点,在直线AC上取一点M,连接PM,做点C关于PM的对称点N,①连接AN,求AN的最小值.②当点N落在抛物线的对称轴上,求直线MN的函数表达式.-参考答案-一、单选题1、B【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:,∴;故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.2、A【解析】【分析】本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可.【详解】由可知,其二次项系数,一次项系数,由韦达定理:,故选:A.【考点】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率.3、B【解析】【详解】解:∵m、n是方程x2-x-2022=0的两个根,∴m2-m-2022=0,n2-n-2022=0,mn=-2022,∴m2-m=2022,n2-n=2022,∴(m2-2m-2022)(-n2+2n+2022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故选:B.【考点】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此题的关键.4、B【解析】【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案.【详解】解:∵的顶点坐标为(0,0)∴将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),∴所得抛物线对应的函数表达式为,故选B【考点】本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键.5、A【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【详解】解:A、实心铁球投入水中会沉入水底,是必然事件,该选项符合题意;B、车辆随机到达一个路口,遇到红灯,是随机事件,该选项不合题意;C、打开电视,正在播放《大国工匠》,是随机事件,该选项不合题意;D、抛掷一枚硬币,正面向上,是随机事件,该选项不合题意;故选:A.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、多选题1、ACD【解析】【分析】根据圆内接四边形性质直接可判断A选项正确;利用切线的性质可判断B选项错误;根据正多边形中心角的定义和多边形外角和可对判断C选项正确;根据切线长定理可判断D选项正确.【详解】A.由圆内接四边形定义得:对角互补的四边形是圆内接四边形,A选项正确;B.圆的切线垂直于过切点的半径,B选项错误;C.正多边形中心角的度数等于这个正多边形一个外角的度数,都等于,C选项正确;D.过圆外一点引的圆的两条切线,则切线长相等,D选项正确.故选:ACD.【考点】本题考查了正多边形与圆、切线的性质和确定圆的条件,解题关键是熟练掌握有关的概念.2、ABCD【解析】【分析】根据圆周角定理即可得出平分,证明全等即可得到,根据即可得到,即可得到;【详解】∵是半圆的直径,∴,又∵,∴,∵,∴,又∵,∴,∴,∴平分,故A正确;又∵,,∴,∴,故B正确;∵,∴,又∵∠CDE=∠COD=45°,∴,故C正确;∴,∴,故D正确;故选ABCD.【考点】本题主要考查了圆周角定理、直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质,准确计算是解题的关键.3、ABCD【解析】【分析】连接HB、HD,利用勾股定理可得,则根据三角形外心的定义可对四个选项进行判断.【详解】解:如图,连接HB、HD,根据勾股定理可得:,点是的外心,点是的外心,点是的外心,点是的外心,∴ABCD都是正确的.故选:ABCD.【考点】本题考查了三角形的外心和勾股定理的应用,熟练掌握三角形的外心到三角形的三个顶点的距离相等是解决本题的关键.4、AC【解析】【分析】根据中心对称与轴对称的概念,即可求解.【详解】解:A、是轴对称图形,故本选项符合题意;B、是中心对称图形,属于图形的旋转,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、既是轴对称图形,也是中心对称图形,包含图形的旋转,故本选项不符合题意;故选:AC.【考点】本题主要考查了中心对称与轴对称的概念,熟练掌握轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合是解题的关键.5、ABC【解析】【分析】判断上述方程的根的情况,只要看根的判别式△的值的符号就可以了.【详解】解:、△,方程无实数根,错误,符合题意;、△,方程无实数根,错误,符合题意;、△,方程无实数根,错误,符合题意;、△,方程有实数根,正确,不符合题意;故选:ABC.【考点】本题考查了一元二次方程根的情况与判别式△的关系:解题的关键是掌握(1)△方程有两个不相等的实数根;(2)△方程有两个相等的实数根;(3)△方程没有实数根.三、填空题1、【解析】【分析】先求出A、B、E的坐标,然后求出半圆的直径为4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,计算即可.【详解】解:,∴点E的坐标为(1,-2),令y=0,则,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,如图,∴点运动的路径长是.【考点】本题属于二次函数和圆的综合问题,考查了运动路径的问题,熟练掌握二次函数和圆的基础是解题的关键.2、且【解析】【分析】若一元二次方程有两个不相等的实数根,则△=b2-4ac>0,建立关于k的不等式,求得k的取值范围,还要使二次项系数不为0.【详解】∵方程有两个不相等的实数根,∴解得:,又二次项系数故答案为且【考点】考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.3、【分析】先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.【详解】解:∵BC是圆O的切线,∴∠OBC=90°,∵四边形ABCO是平行四边形,∴AO=BC,又∵AO=BO,∴BO=BC,∴∠BOC=∠BCO=45°,∵OD=OB,∴∠ODB=∠OBD,∵∠ODB+∠OBD=∠BOC,∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,故答案为:22.5°.【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.4、【分析】利用勾股定理求出AC及AB的长,根据阴影面积等于求出答案.【详解】解:由旋转得,,=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB=,,∴阴影部分的面积==,故答案为:..【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.5、【分析】根据题中点的坐标可得圆的直径,半径为1,分析以AB定长为底,点D在圆上,高最大为圆的半径,即可得出三角形最大的面积;连接AP,设点,根据切线的性质及勾股定理可得,由其非负性即可得.【详解】解:如图所示:当点P到如图位置时,的面积最大,∵、,∴圆的直径,半径为1,∴以AB定长为底,点D在圆上,高最大为圆的半径,如图所示:此时面积的最大值为:;如图所示:连接AP,∵PD切于点D,∴,∴,设点,在中,,,∴,在中,,∴,则,当时,PD取得最小值,最小值为,故答案为:①;②.【点睛】题目主要考查切线的性质及勾股定理的应用,理解题意,作出相应图形求出解析式是解题关键.四、简答题1、避雷针BC的长度为4.8米.【解析】【分析】解直角三角形求出CD,BD,根据BC=CD-BD求解即可.【详解】解:在Rt△ABD中,∵,∴1.48=,∵AD=80米,∴BD=118.4(米),在Rt△CAD中,∵tan∠CAD=,∴1.54=,∴CD=123.2(米),∴BC=CD-BD=4.8(米)答:避雷针BC的长度为4.8米.【考点】本题考查解直角三角形的应用,解题的关键是熟练掌握基本知识,属于中考常考题型.2、(1);(2);(3)满足条件的x取值范围为:0<x<3或x>12.【解析】【分析】(1)先求出OA,再判断出,得出比例式求出x的值,即可得出结论;(2)先利用等面积求出x知,再判断出,进而求出DH,OH,最后用勾股定理求出DF,即可得出结论;(3)分两种情况:点O在边AC上和在AC的延长线上,找出分界点,求出x值,即可得出结论.【详解】(1)在Rt△ABC中,AB=10,根据勾股定理得,,∵点O为AC边的中点,∴AO=AC=,∵OD⊥AB,∠ACB=90°,∴∠ADO=∠ACB,又∵∠A=∠A,∴.∴,∴,∴.(2)如图,过点D作DH⊥AC于H,∵点O与点C重合,∴S△ABC=OD•AB=,即10x=8×6,∴.∵DH⊥AC于H,∴∠DHO=∠ACB=90°,∴∠DOH+∠BOD=∠BOD+∠ABC,∴∠DOH=∠ABC,∴.∴,∴,∴,.∵OF=OD=,∴FH=OH+OF=.∴在Rt△DFH中,根据勾股定理得,∴.(3)如图,当点O在边AC上,且半圆O与AB,∴OC=OD=x,∴AO=AC﹣OC=8﹣x,∵∠ADO=∠ACB=90°,∠A=∠A,∴,∴,∴,∴x=3,∴0<x<3,如图,当点O在AC的延长线上,且半圆O与AB,∴OC=OD=x,∴AO=AC+OC=8+x,∵∠ADO=∠ACB=90°,∠A=∠A,∴,∴,∴,∴x=12,即满足条件的x取值范围为:0<x<3或x>12.【考点】此题是圆的综合题,主要考查了勾股定理,相似三角形的判定和性质,用分类讨论的思想和方程的思想解决问题是解本题的关键.五、解答题1、(1)0.28;(2)【分析】(1)由表中数据可判断频率在0.28左右摆动,利用频率估计概率可判断任意抽取一个毛绒玩具是优等品的概率为0.28;(2)先列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.(1)解:从这批盲盒中任意抽取一个是玩具B的概率是0.28,故答案为0.28.(2)列表为:ABCDA--BACADABAB--CBDBCACBC--DCDADBDCD--由上表可知,从四种玩具的四个盲盒中随机抽取两个共有12种等可能结果,其中恰为玩具A和玩具C的结果有2种,所以恰为玩具A和玩具C的概率P=.【点睛】本题考查了利用频率估计概率及用列表法或树状图法求概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.2、(1)8(2)(3)或.【分析】(1)过点O作OH⊥AC于点H,由垂径定理可得AH=CH=AC,由锐角三角函数和勾股定理可求解;(2)分两种情况讨论,由相似三角形的性质可求AG,EG,CG的长,即可求解;(3)分两种情况讨论,由相似三角形和勾股定理可求解.(1)如图2,过点O作OH⊥AC于点H,由垂径定理得:AH=CH=AC,在Rt△OAH中,,∴设OH=3x,AH=4x,∵OH2+AH2=OA2,∴(3x)2+(4x)2=52,解得:x=±1,(x=﹣1舍去),∴OH=3,AH=4,∴AC=2AH=8;(2)如图2,过点O作OH⊥AC于H,过E作EG⊥AC于G,∵∠DEO=∠AEC,∴当△DOE与△AEC相似时可得:∠DOE=∠A或者∠DOE=∠ACD;,∴∠ACD≠∠DOE∴当△DOE与△AEC相似时,不存在∠DOE=∠ACD情况,∴当△DOE与△AEC相似时,∠DOE=∠A,∴OD∥AC,∴,∵OD=OA=5,AC=8,∴,∴,∵∠AGE=∠AHO=90°,∴GE∥OH,∴△AEG∽△AOH,∴,∴,∴,∴,,在Rt△CEG中,;(3)当点E在线段OA上时,如图3,过点E作EG⊥AC于G,过点O作OH⊥AC于H,延长AO交⊙O于M,连接AD,DM,由(1)可得OH=3,AH=4,AC=8,∵OE=1,∴AE=4,ME=6,∵EG∥OH,∴△AEG∽△AOH,∴,∴AG=,EG=,∴GC=,∴EC===,∵AM是直径,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=2;当点E在线段AO的延长线上时,如图4,延长AO交⊙O于M,连接AD,DM,过点E作EG⊥AC于G,同理可求EG=,AG=,AE=6,GC=,∴EC===,∵AM是直径,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=,综上所述:AD的长是或【点睛】本题考查了垂径定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性质与判定,圆周角定理,正切的作出辅助线是解题的关键.3、(1)(2)此游戏公平,理由见解析.【分析】(1)利用概率公式求解即可;(2)利用列表法列举出所有可能,进而利用概率公式进而得出甲、乙获胜的概率即可得出答案.(1)解:第一次抽取的卡片上数字是非负数的概率为,故答案为:.(2)解:列表如下:01-2301-231-1-32-22353-3-2-5由表可知,共有12种等可能结果,其中结果为非负数的有6种结果,结果为负数的有6种结果,所以甲获胜的概率=乙获胜的概率==,∴此游戏公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 夏季悠闲水上乐园互动方式
- 采购合同计划手段
- 冰淇淋制作技巧操作手册规程
- 语文诵读比赛活动方案
- 仓库盘点预案利用
- 社交焦虑康复训练营创新创业项目商业计划书
- 城市地铁事故应急救援规划
- 仓库盘点规范方法操作
- 行走祭扫活动方案
- 蜂蜜展会活动方案
- 学校食堂食品验收制度
- 动火作业施工方案
- TCECA-G 0330-2024 磁悬浮离心式鼓风机 技术条件
- 党政机关公文格式课件
- 电动汽车智能充电桩管理方案幻灯片
- 轨道交通工程设计与施工方案
- 吉林大学《面向对象程序设计课程设计》2021-2022学年第一学期期末试卷
- 2024-2025学年安徽省合肥四十五中九年级(上)第一次月考物理试卷(含答案)
- GB/T 17727-2024船用法兰非金属垫片
- 中国老龄化与健康国家评估报告-世界卫生组织-2020409
- YY-T 1936-2024 定制式固定义齿
评论
0/150
提交评论