2024-2025学年浙江省嵊州市中考数学通关考试题库附参考答案详解(夺分金卷)_第1页
2024-2025学年浙江省嵊州市中考数学通关考试题库附参考答案详解(夺分金卷)_第2页
2024-2025学年浙江省嵊州市中考数学通关考试题库附参考答案详解(夺分金卷)_第3页
2024-2025学年浙江省嵊州市中考数学通关考试题库附参考答案详解(夺分金卷)_第4页
2024-2025学年浙江省嵊州市中考数学通关考试题库附参考答案详解(夺分金卷)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省嵊州市中考数学通关考试题库考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、从下列命题中,随机抽取一个是真命题的概率是()(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)弧长是,面积是的扇形的圆心角是.A. B. C. D.12、以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=25°,则∠OCD=(

).A.50° B.40° C.70° D.30°3、如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,过点C作⊙O的切线,交AB的延长线于点D.设∠A=α,∠D=β,则()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°4、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是(

)A. B.C. D.5、对于函数的图象,下列说法不正确的是(

)A.开口向下 B.对称轴是直线C.最大值为 D.与轴不相交二、多选题(5小题,每小题3分,共计15分)1、如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论中正确的结论是()A.△BO′A可以由△BOC绕点B逆时针旋转60°得到B.点O与O′的距离为4C.∠AOB=150°D.S四边形AOBO′=6+3E.S△AOC+S△AOB=6+2、如图,二次函数y=ax2+bx+c的图象经过点A(﹣4,0),其对称轴为直线x=﹣1,下列结论正确的是(

)A.a+b+c<0B.abc<0C.2a+b=0D.若P(﹣6,y1),Q(m,y2)是抛物线上两点,且y1>y2,则﹣6<m<43、如图,为的直径延长线上的一点,与相切,切点为,是上一点,连接.已知,则下列结论正确的为(

)A.与相切 B.四边形是菱形C. D.4、对于实数a,b,定义运算“※”:,例如:4※2,因为,所以,若函数,则下列结论正确的是(

)A.方程的解为,;B.当时,y随x的增大而增大;C.若关于x的方程有三个解,则;D.当时,函数的最大值为1.5、下列图形中,是中心对称图形的是(

)A. B.C. D.第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、小亮同学在探究一元二次方程的近似解时,填好了下面的表格:根据以上信息请你确定方程的一个解的范围是________.2、如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是_________.3、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为________.4、抛物线的图象和轴有交点,则的取值范围是______.5、已知二次函数与x轴有两个交点,把当k取最小整数时的二次函数的图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,若新图象与直线有三个不同的公共点,则m的值为______.四、解答题(6小题,每小题10分,共计60分)1、已知:如图,△ABC中,AB=AC,AB>BC.求作:线段BD,使得点D在线段AC上,且∠CBD=∠BAC.作法:①以点A为圆心,AB长为半径画圆;②以点C为圆心,BC长为半径画弧,交⊙A于点P(不与点B重合);③连接BP交AC于点D.线段BD就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接PC.∵AB=AC,∴点C在⊙A上.∵点P在⊙A上,∴∠CPB=∠BAC.()(填推理的依据)∵BC=PC,∴∠CBD=.()(填推理的依据)∴∠CBD=∠BAC.2、已知关于的方程有实根.(1)求的取值范围;(2)设方程的两个根分别是,,且,试求的值.3、如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C′的位置,使得CC′AB,求∠CC'A的度数.4、解一元二次方程(1)(2)5、已知P为⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若∠APQ=∠BPQ(1)如图1,当∠APQ=45°,AP=1,BP=2时,求⊙O的半径。(2)如图2,连接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,设∠NOP=α,∠OPN=β,若AB平行于ON,探究α与β的数量关系。6、已知关于x的一元二次方程有两个相等的实数根,求的值.-参考答案-一、单选题1、C【解析】【分析】分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解,是真命题,(3)棱长是的正方体的表面展开图的周长一定是,是真命题,(4)设扇形半径为r,圆心角为n,∵弧长是,则=,则,∵面积是,则=,则360×240,则,则n=3600÷24=150°,故扇形的圆心角是,是假命题,则随机抽取一个是真命题的概率是,故选C.【考点】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.2、C【解析】【分析】根据圆周角定理求出∠DOB,根据等腰三角形性质求出∠OCD=∠ODC,根据三角形内角和定理求出即可.【详解】解:连接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故选:C.【考点】本题考查了圆周角定理,等腰三角形性质,三角形内角和定理的应用,主要考查学生的推理能力,题目比较典型,难度适中.3、C【解析】【分析】连接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切线,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【详解】连接OC,如图,∵⊙O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故选:C.【考点】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质.4、B【解析】【分析】由题意可知,每个同学需赠送出(x-1)件标本,x名同学需赠送出x(x-1)件标本,即可列出方程.【详解】解:由题意可得,x(x-1)=182,故选B.【考点】本题主要考查了一元二次方程的应用,审清题意、确定等量关系是解答本题的关键.5、D【解析】【分析】根据二次函数的性质,进行判断,即可得到答案.【详解】解:∵,则开口向下,故A正确;对称轴是直线,故B正确;当,y有最大值k,故C正确;当,,与y轴肯定有交点,故D错误;故选择:D.【考点】本题考查了二次函数的性质,解题的关键是熟记二次函数的性质.二、多选题1、ABCE【解析】【分析】证明可判断证明是等边三角形,可判断利用是等边三角形,证明可判断由是等边三角形,可得四边形的面积,可判断如图,将绕点逆时针旋转与重合,对应,同理可得:是边长为的等边三角形,是边长为的直角三角形,从而可判断【详解】解:由题意得:为等边三角形,△BO′A可以由△BOC绕点B逆时针旋转60°得到,故符合题意;如图,连接,由是等边三角形,则点O与O′的距离为4,故符合题意;故符合题意;如图,过作于是等边三角形,S四边形AOBO′=故不符合题意;如图,将绕点逆时针旋转与重合,对应,同理可得:是边长为的等边三角形,是边长为的直角三角形,同理可得:故符合题意;故选:【考点】本题考查的是等边三角形的判定与性质,旋转的性质,勾股定理与勾股定理的逆定理的应用,全等三角形的判定与性质,熟练的做出正确的辅助线是解题的关键.2、ABD【解析】【分析】根据题意可得点A(﹣4,0)关于对称轴的对称点,从而得到当时,,再由,可得在对称轴右侧随的增大而增大,从而得到当时,;根据图象可得,,可得;再由,可得;然后根据P(﹣6,y1)关于对称轴的对称点,可得当y1>y2时,﹣6<m<4,即可求解.【详解】解:∵二次函数y=ax2+bx+c的图象经过点A(﹣4,0),其对称轴为直线x=﹣1,∴点A(﹣4,0)关于对称轴的对称点,即当时,,∵抛物线开口向上,∴,∴在对称轴右侧随的增大而增大,∴当时,,故A正确;∵抛物线与交于负半轴,∴,∵对称轴为直线x=﹣1,,∴,即,∴,故B正确;∵,∴,故C错误;∵P(﹣6,y1)关于对称轴的对称点,∴当y1>y2时,﹣6<m<4,故D正确.故选:ABD【考点】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质,并利用数形结合思想解答是解题的关键.3、ABCD【解析】【分析】A、利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;B、利用A项所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB(SAS),即可得出答案;C、利用全等三角形的判定得出△PCO≌△BCA(ASA),进而得出答案;D、利用四边形PCBD是菱形,∠CPO=30°,则DP=DB,则∠DPB=∠DBP=30°,求出即可.【详解】A、连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故A正确;B、由A项得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故B正确;C、连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴PO=AB,故C正确;D、∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故D正确;故选:ABCD.【考点】此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键.4、ABD【解析】【分析】根据题干定义求出y=(2x)※(x+1)的解析式,根据2x≥x+1及2x<x+1可得x≥1时y=2x2﹣2x,x<1时,y=﹣x2+1,进而求解.【详解】解:根据题意得:当2x≥x+1,即x≥1时,y=(2x)2﹣2x(x+1)=2x2﹣2x,当2x<x+1,即x<1时,y=(x+1)2﹣2x(x+1)=﹣x2+1,∴当x≥1时,2x2﹣2x=0,解得x=0(舍去)或x=1,当x<1时,﹣x2+1=0,解得x=1(舍去)或x=﹣1,∴(2x)※(x+1)=0的解是x1=﹣1,x2=1;故A正确,B、当x>1时,y=2x2﹣2x,抛物线开口向上,对称轴是直线x=,∴x>1时,y随x的增大而增大,∴B选项正确.当x≥1时,y=2x2﹣2x=2(x﹣)2﹣,∴x=1时,y取最小值为y=0,当x<1时,y=﹣x2+1=0,当x=0时,y取最大值为y=1,如图,当0<m<1时,方程(2x)※(x+1)=m有三个解,∴选项C错误,选项D正确.故答案为:ABD.【考点】本题考查二次函数的新定义问题,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系.5、BD【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,进而判断得出答案.【详解】解:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项不符合题意;B.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,故此选项符合题意;C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项不合题意;D.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,故此选项符合题意.故选:BD.【考点】本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.三、填空题1、【解析】【分析】观察表格可知,随x的值逐渐增大,ax2+bx+c的值在3.24~3.25之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在3.24<x<3.25之间.【详解】根据表格可知,ax2+bx+c=0时,对应的x的值在3.24<x<3.25之间.故答案为3.24<x<3.25.【考点】本题考查了一元二次方程的知识点,解题的关键是根据表格求出一元二次方程的近似根.2、2【解析】【分析】根据中心对称的性质AD=DE及∠D=90゜,由勾股定理即可求得AE的长.【详解】∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE=,故答案为.【考点】本题考查了中心对称的性质,勾股定理等知识,关键中心对称性质的应用.3、【解析】【分析】连接OC交AB于点D,再连接OA.根据轴对称的性质确定,OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度.【详解】解:如下图所示,连接OC交AB于点D,再连接OA.∵折叠后弧的中点与圆心重叠,∴,OD=CD.∴AD=BD.∵圆形纸片的半径为10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案为:.【考点】本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键.4、且【解析】【分析】由题意知,,计算求解即可.【详解】解:由题意知,解得故答案为:且.【考点】本题考查了二次函数与轴的交点个数.解题的关键在于熟练掌握二次函数与轴的交点个数.5、1或【解析】【分析】先运用根的判别式求得k的取值范围,进而确定k的值,得到抛物线的解析式,再根据折叠得到新图像的解析式,可求出函数图象与x轴的交点坐标,画出函数图象,可发现,若直线与新函数有3个交点,可以有两种情况:①过交点(-1,0),根据待定系数法可得m的值;②不过点(一1,0),与相切时,根据判别式解答即可.【详解】解:∵函数与x轴有两个交点,∴,解得,当k取最小整数时,,∴抛物线为,将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,所以新图象的解析式为(或)

:①因为为的,所以它的图象从左到右是上升的,当它与新图象有3个交点时它一定过,把代入得所以,②与相切时,图象有三个交点,,,解得.故答案为:1或.【考点】本题主要考查了二次函数图象与几何变换、待定系数法求函数解析式等知识点,掌握分类讨论和直线与抛物线相切时判别式等于零是解答本题的关键.四、解答题1、(1)见解析;(2)圆周角定理;,圆周角定理的推论【解析】【分析】(1)利用几何语言画出对应的几何图形;(2)先根据圆周角定理得到,再利用等腰三角形的性质得到,从而得到.【详解】解:(1)如图,为所作;(2)证明:连接,如图,,点在上.点在上,(圆周角定理),,(圆周角定理的推论).故答案为:圆周角定理;;圆周角定理的推论.【考点】本题考查了作图复杂作图、也考查了圆周角定理,解题的关键是掌握复杂作图的五种基本作图的基本方法,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.2、(1);(2)不存在【解析】【分析】(1)根据根的判别式即可求出答案.(2)根据根与系数的关系即可求出答案.【详解】解:(1)∵,,,∴,∴;(2)由题意可知:x1+x2=2,x1x2=,∵,∴,∴k=,∵,∴k=不符合题意,舍去,∴k的值不存在.【考点】本题考查了一元二次方程根的判别式,解题的关键是熟练运用根与系数的关系以及根的判别式,本题属于基础题型.3、∠CC'A=70°【解析】【分析】先根据平行线的性质,由得∠AC′C=∠CAB=70°,再根据旋转的性质得AC=AC′,∠BAB′=∠CAC′,于是根据等腰三角形的性质有∠ACC′=∠AC′C=70°.【详解】∵,∴∠ACC′=∠CAB=70°,∵△ABC绕点A旋转到△AB′C′的位置,∴AC=AC′,∠BAB′=∠CAC′,在△ACC′中,∵AC=AC′∴∠ACC′=∠CC'A=70°,【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.4、(1)x1=2,x2=-2;(2)x1=4,x2=-2.【解析】【分析】(1)先把方程变形为x2=4,然后利用直接开平方法解方程;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论