




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、从下列命题中,随机抽取一个是真命题的概率是(
)(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)两条对角线长分别为6和8的菱形的周长是40.A. B. C. D.12、如图,正方形纸板的一条对角线重直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是(
)A. B. C. D.3、距考试还有20天的时间,为鼓舞干劲,老师要求班上每一名同学要给同组的其他同学写一份拼搏进取的留言,小明所在的小组共写了30份留言,该小组共有()A.7人 B.6人 C.5人 D.4人4、如图,D,E分别是△ABC的边AB,AC上的点,连接DE,下列条件不能判定△ADE与△ABC相似的是()A.∠ADE=∠B B.∠AED=∠C C. D.5、已知x1,x2是一元二次方程2x2-3x=5的两个实数根,下列结论错误的是()A.2-3x1=5 B.(x1-x2)(2x1+2x2-3)=0C.x1+x2= D.x1x2=6、如图,为△的中位线,点在上,且;若,则的长为(
)A.2 B.1 C.4 D.3二、多选题(6小题,每小题2分,共计12分)1、有下列四个命题,其中不正确的为(
)A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是菱形C.两条对角线互相垂直的四边形是正方形D.两条对角线相等且互相垂直的四边形是正方形2、如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且,下列结论:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正确的为(
)A.① B.② C.③ D.④3、下列命题中不是真命题的是(
)A.两边相等的平行四边形是菱形B.一组对边平行一组对边相等的四边形是平行四边形C.两条对角线相等的平行四边形是矩形D.对角线互相垂直且相等的四边形是正方形4、图,在边长为4的正方形ABCD中,点E,F分别是边BC,AB的中点,连接AE,DF交于点N,将沿AE翻折,得到,AG交DF于点M,延长EG交AD的延长线于点H,连接CG,ME,取ME的中点为点O,连接NO,GO.则以下结论正确的有(
)A. B. C. D.5、如图,△ABC中,P为AB上点,在下列四个条件中能确定△APC和△ACB相似的是(
)A.∠ACP=∠B B.∠APC=∠ACB C.∠CAP=∠BAC D.6、如图,四边形ABCD为菱形,BFAC,DF交AC的延长线于点E,交BF于点第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、举出一个生活中应用反比例函数的例子:______.2、将方程(3x-1)(2x+4)=2化为一般形式为____________,其中二次项系数为________,一次项系数为________.3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,由于疫情,为了扩大销售量,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?设每件衬衫降价x元,由题意列得方程______.4、你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是_____.(只填序号)5、如图,在平面直角坐标系中,一条过原点的直线与反比例函数的图象x相交于两点,若,,则该反比例函数的表达式为______.6、如图,将矩形的四个角向内折起,恰好拼成一个无缝隙重叠的四边形,若,,则边的长是____.7、如图,四边形ABCD为菱形,,延长BC到E,在内作射线CM,使得,过点D作,垂足为F.若,则对角线BD的长为______.8、如图,在一块长为22m,宽为14m的矩形空地内修建三条宽度相等的小路(阴影部分),其余部分种植花草.若花草的种植面积为240m2,则小路的宽为________m.四、解答题(6小题,每小题10分,共计60分)1、解一元二次方程(1)(2)2、已知,是一元二次方程的两个实数根.(1)求k的取值范围;(2)是否存在实数k,使得等式成立?如果存在,请求出k的值,如果不存在,请说明理由.3、如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣1,2)、B(2,1)、C(4,5).(1)以原点O为位似中心,在x轴的上方画出△A1B1C1,使△A1B1C1与△ABC位似,且相似比为2;(2)△A1B1C1的面积是平方单位.(3)点P(a,b)为△ABC内一点,则在△A1B1C1内的对应点P’的坐标为.4、如图,在△ABC和△DCB中,AB=DC,∠A=∠D,AC、DB交于点M.(1)求证:△ABC≌△DCB;(2)作CN∥BD,BN∥AC,CN交BN于点N,四边形BNCM是什么四边形?请证明你的结论.5、定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.(1)如图①,四边形ABCD与四边形AEFG都是正方形,135°<∠AEB<180°,求证:四边形BEGD是“等垂四边形”;(2)如图②,四边形ABCD是“等垂四边形”,AD≠BC,连接BD,点E,F,G分别是AD,BD,BC的中点,连接EG,FG,EF.试判定△EFG的形状,并证明你的结论;(3)如图③,四边形ABCD是“等垂四边形”,AD=4,BC=8,请直接写出边AB长的最小值.
6、如图,一次函数y1=ax+b与反比例函数的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围;(3)点P是x轴上一点,当时,请求出点P的坐标.-参考答案-一、单选题1、C【解析】【分析】分别判断各命题的真假,再利用概率公式求解.【详解】(1)无理数都是无限小数,是真命题,(2)因式分解,是真命题,(3)棱长是的正方体的表面展开图的周长一定是,是真命题,(4)菱形的对角线长为6和8根据菱形的性质,对角线互相垂直且平分,利用勾股定理可求得菱形的边长为5,则菱形的周长为,是假命题则随机抽取一个是真命题的概率是,故选:C.【考点】本题考查了命题的真假,概率,菱形的性质,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.2、D【解析】【分析】因为中心投影物体的高和影长成比例,正确的区分中心投影和平行投影,依次分析选项即可找到符合题意的选项【详解】因为正方形的对角线互相垂直,且一条对角线垂直地面,光源与对角线组成的平面垂直于地面,则有影子的对角线仍然互相垂直,且由于光源在平板的的上方,则上方的边长影子会更长一些,故选D【考点】本题考查了中心投影的概念,应用,利用中心投影的特点,理解中心投影物体的高和影长成比例是解题的关键.3、B【解析】【分析】设小组有x人,根据题意,得x(x-1)=30,解方程即可.【详解】设小组有x人,根据题意,得x(x-1)=30,整理,得,解方程,得(舍去),故选B.【考点】本题考查了一元二次方程的应用,熟练掌握方程的应用是解题的关键.4、D【解析】【分析】根据相似三角形的判定定理逐个分析判断即可.【详解】解:∵∠ADE=∠B,∴故A能判定△ADE与△ABC相似,不符合题意;∠AED=∠C,∴故B能判定△ADE与△ABC相似,不符合题意;,∴故C能判定△ADE与△ABC相似,不符合题意;,条件未给出,不能判定△ADE与△ABC相似,故D符合题意故选D【考点】本题考查了相似三角形的判定定理,掌握相似三角形的判定定理是解题的关键.5、D【解析】【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.【详解】解:∵x1、x2是一元二次方程2x2-3x=5的两个实数根,∴,故A正确,不符合题意;这里a=2,b=-3,c=-5,∴,,∵,∴,∴,故B、C正确,不符合题意,D错误,符合题意.故选:D.【考点】本题考查了一元二次方程根的意义,根与系数的关系等,熟练掌握根与系数的关系,,是解题的关键.6、A【解析】【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出DF,计算即可.【详解】∵DE为△ABC的中位线,∴DE=BC=5,∵∠AFB=90°,D是AB的中点,∴DF=AB=3,∴EF=DE-DF=2,故选A.【考点】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、多选题1、BCD【解析】【分析】利用平行四边形的判定、菱形的判定及正方形的判定逐一判断后即可确定正确的选项.【详解】解:A、两条对角线互相平分的四边形是平行四边形,故此选项不符合题意;B、两条对角线互相垂直平分的四边形是菱形,故此选项符合题意;C、两条对角线互相垂直平分且相等的四边形是正方形,故此选项符合题意;D、两条对角线相等且互相垂直平分的四边形是正方形,故此选项符合题意.故选BCD.【考点】本题考查了命题与定理的知识,了解平行四边形的判定、菱形的判定及正方形的判定是解答本题的关键,难度较小.2、BC【解析】【分析】根据相似三角形的定义,已知条件判定相似的三角形,再利用相似三角形的性质逐一判断选项即可.【详解】解:在正方形中,是的中点,是上一点,且,,..,.,,,..,.②③正确.故选:BC.【考点】本题考查了相似三角形的判定与性质,解题的关键是掌握判定定理有①有两个对应角相等的三角形相似,②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.3、ABD【解析】【分析】利用平行四边形、矩形、菱形及正方形的判定方法分别判断即可.【详解】A选项:有一组邻边相等的平行四边形是菱形,故原命题错误,是假命题,符合题意;B选项:一组对边平行且相等的四边形是平行四边形,故原命题错误,是假命题,符合题意;C选项:两条对角线相等的平行四边形是矩形,故原命题正确,是真命题,不符合题意;D选项:两条对角线互相垂直且相等的平行四边形是正方形,故原命题错误,是假命题,符合题意.故选:ABD.【考点】考查了平行四边形、菱形、矩形和正方形的判定,解题关键是熟练掌握特殊四边形的判定方法.4、ABC【解析】【详解】解:∵四边形ABCD是正方形,∴AD=AB=BC,∠DAB=∠B=90°,∴∠ADF+∠AFD=90°,∵点E、F分别是边BC、AB的中点,∴AF=AB,BE=EC=BC,∴AF=BE,∴△DAF≌△ABE(SAS),∴∠BAE=∠ADF,∴∠BAE+∠AFD=90°,∴∠ANF=180°-(∠BAE+∠AFD)=90°,∴∠AND=90°,故A正确;∵四边形ABCD是正方形,∴AD∥BC,∴∠DAE=∠AEB,由折叠得:∠AEB=∠AEG,∴∠DAE=∠AEG,∴AH=EH,故B正确;由折叠得:∠AEB=∠AEG=(180°-∠GEC),GE=BE=EC,∴∠EGC=∠ECG=(180°-∠GEC),∴.∠AEB=∠GCE,∴AE∥CG,故C正确;∵O为ME中点,∴,,∴+,∵+-,且△AGE≌△DAF,∴+-,∵∠AND=90°=∠ANF,∠FAN=∠MAN,AN=AN,∴△ANF≌△ANM,∴+-,∴,只有M是边DN中点的时,D才成立,故D错误;故选A、B、C.【考点】本题考查正方形和折叠的综合应用,熟练掌握正方形的性质、折叠的性质、三角形全等的判定和性质、三角形内角和定理、平行线的判定等是解题关键.5、ABD【解析】【分析】根据有两组角对应相等的两个三角形相似可对A、B、C进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对D进行判断.【详解】解:∵∠ACP=∠B,∠A公共角,∴△APC∽△ACB,故选项A正确,符合题意;∵∠APC=∠ACB,∠A公共角,∴△APC∽△ACB,故选项B正确,符合题意;∵∠CAP=∠BAC,只有一组角相等,∴不能判断△APC和△ACB相似,故选项C错误,不符合题意;∵,∠A是夹角,∴△APC∽△ACB,故选项D正确,符合题意.故答案为:ABD.【考点】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.6、ABD【解析】【分析】根据菱形的性质、全等三角形的判定与性质、中线的性质即可依次判断.【详解】解:∵四边形ABCD为菱形,∴AB=AD,∠BAE=∠DAE,∵AE=AE,∴△ABE≌△ADE(SAS);∴BE=DE,∠AEB=∠AED,∵CE=CE,∴△CBE≌△CDE(SAS),A正确;∵BFAC,∴∠FBE=∠AEB,∠AED=∠F,∴∠FBE=∠F,∴BE=EF,∴DE=FE,B正确;连接BD交AC于O,∵AO=CO,∵CE:AC=1:2,∴AO=CO=CE,设S△BCE=m,∴S△ABC=S△ADC=2m,S△BOE=S△DOE=2m,∴S四边形ABDC=4m,S△BDE=4m,∵E点是DF中点∴S△BEF=S△BDE=4m,∴S△BEF=S四边形ABCD,故D正确;∵AE与DE不相等,故AE与BE不相等故C错误;故选:ABD.【考点】本题考查了全等三角形的判定和性质,菱形的性质,平行线的性质,三角形的面积的计算,正确的识别图形是解题的关键.三、填空题1、路程s一定,速度v与时间t之间的关系(答案不唯一).【解析】【分析】利用反比例函数的定义并结合生活中的实例来解答此题即可【详解】根据路程=速度时间,速度v则可以用反比例函数来表示.故答案可以为路程s一定,速度v与时间t之间的关系(答案不唯一).【考点】本题主要考查了反比例函数的定义形式如(k为常数,)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.2、
3x2+5x-3=0
3
5【解析】【分析】将方程展开,化简后即可求解.【详解】将,开展为一般形式为:;则可知一次项系数为5,二次项系数为3,故答案为:,3,5.【考点】本题主要考查了将一元二次方程化为最简式以及判断方程各项系数的知识,熟记相关考点概念是解答本题的关键.3、【解析】【分析】设每件衬衫降价x元,根据每件衬衫每降价1元,商场平均每天可多售出2件可得销售量为,则每件衬衫的利润为,根据销售量乘以每件衬衫的利润等于1200元,列出一元二次方程即可【详解】解:设每件衬衫降价x元,根据题意得,故答案为:【考点】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.4、②【解析】【分析】仿造案例,构造面积是的大正方形,由它的面积为,可求出,此题得解.【详解】解:即,构造如图②中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.故答案为②.【考点】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键.5、y=.【解析】【分析】由正比例函数与反比例函数的两个交点关于原点对称,可得m2-7=2,由点A在第三象限可求m的值,即可求点A坐标,代入解析式可求解.【详解】解:∵一条过原点的直线与反比例函数的图象相交于A、B两点,∴点A与点B关于原点对称,∴m2-7=2,∴m=±3,∵点A在第三象限,∴m<0,∴m=-3,∴点A(-3,-2),∵点A在反比例函数的图象上,∴k=-3×(-2)=6,∴反比例函数的表达式为y=,故答案为:y=.【考点】本题考查了反比例函数与一次函数的交点问题,掌握正比例函数与反比例函数的两个交点关于原点对称是本题的关键.6、【解析】【分析】由折叠的性质和矩形的性质可得∠HEF=90°,EA=EB=3,证明△HNG≌△FME,求出HF,设AH=x,在△AEH,△BEF和△EFH中,利用勾股定理列出方程,求出x,即可得到EH.【详解】解:∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,由折叠可知:△EAH≌△EMH,△HNG≌△HDG,△FBE≌△FME,∴EA=EM,AH=MH,HD=HN,EB=EM,FB=FM,∠AEH=∠MEH,∠BEF=∠MEF,∠BME=∠B=90°,∠HNG=∠D=90°,∴EA=EB=AB=3,∵∠AEH+∠MEH+∠BEF+∠MEF=180°,∴2∠MEH+2∠MEF=180°,∴∠HEF=90°,同理可知:∠EHG=∠EFG=∠HGF=90°,∴四边形EHGF是矩形,∴HG∥FE,HG=FE,∴∠GHN=∠EFM,在△HNG和△FME中,,∴△HNG≌△FME(AAS),∴HN=FM,∴HD=FM,∴HF=HM+FM=AH+HD=AD=10,设AH=x,则HD=FM=FB=10-x,∵,,,∴,即,解得:x=1或x=9(舍),∴AH=1,∴,故答案为:.【考点】本题考查了翻折变换,矩形的性质,勾股定理,全等三角形的判定和性质,利用勾股定理列出方程是本题的关键.7、【解析】【分析】连接AC交BD于H,证明DCH≌DCF,得出DH的长度,再根据菱形的性质得出BD的长度.【详解】解:如图,连接AC交BD于点H,由菱形的性质得∠BDC=35,∠DCE=70,又∵∠MCE=15,∴∠DCF=55,∵DF⊥CM,∴∠CDF=35,又∵四边形ABCD是菱形,∴BD平分∠ADC,∴∠HDC=35,在CDH和CDF中,∴CDH≌CDF(AAS),∴,∴DB=,故答案为.【考点】本题主要考查菱形的性质和全等三角形的判定,菱形的对角线互相平分是此题的关键知识点,得出∠HDC=∠FDC是这个题最关键的一点.8、2【解析】【分析】设小路宽为xm,则种植花草部分的面积等同于长(22-x)m,宽(14-x)m的矩形的面积,根据花草的种植面积为240m2,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:设小路宽为xm,则种植花草部分的面积等同于长(22-x)m,宽(14-x)m的矩形的面积,依题意得:(22-x)(14-x)=240,整理得:x2-36x+68=0,解得:x1=2,x2=34(不合题意,舍去).故答案为:2.【考点】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.四、解答题1、(1)x1=2,x2=-2;(2)x1=4,x2=-2.【解析】【分析】(1)先把方程变形为x2=4,然后利用直接开平方法解方程;(2)先把方程化为一般式,然后利用因式分解法解方程.【详解】解:(1)∵x2=4,∴x=±2,∴x1=2,x2=-2;(2)方程整理为x2-2x-8=0.(x-4)(x+2)=0,x-4=0或x+2=0,∴x1=4,x2=-2.【考点】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了直接开平方法解方程.2、(1);(2)【解析】【分析】(1)根据方程的系数结合≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=2,x1x2=k+2,结合,即可得出关于k的方程,解之即可得出k值,再结合(1)即可得出结论.【详解】解:(1)∵一元二次方程有两个实数根,∴解得;(2)由一元二次方程根与系数关系,∵,∴即,解得.又由(1)知:,∴.【考点】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合,找出关于k的方程.3、(1)见解析;(2)28;(3)(2a,2b).【解析】【分析】(1)连接OB,延长OB到B1使得OB1=2OB,同法作出A1,C1,连接A1C1,B1C1,A1B1即可.(2)两条分割法求出三角形的面积即可.(3)利用相似三角形的性质解决问题即可.【详解】解:(1)△A1B1C1即为所求.(2)△A1B1C1的面积=4S△ABC=4×(4×5﹣×3×5﹣×1×3﹣×2×4)=28,故答案为:28.(3)点P(a,b)为△ABC内一点,则在△A1B1C1内的对应点P’的坐标为(2a,2b),故答案为:(2a,2b).【考点】本题考查作图——位似变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、(1)证明见解析;(2)四边形BNCM是菱形,证明见解析.【解析】【分析】(1)根据题意利用AAS可证明出△ABM和△DCM,然后根据全等三角形的性质得出∠MBC=∠MCB,最后利用AAS即可作出证明;(2)根据平行线的性质和题意,即可得出△MBC≌△NCB,根据全等三角形的性质即可作出证明.【详解】如图所示(1)在△ABM和△DCM中,,∴△ABM≌△DCM(AAS),∴BM=CM,∴∠MBC=∠MCB,在△ABC和△DCB中,,∴△ABC≌△DCB(AAS)(2)四边形BNCM是菱形,其理由如下:∵CN∥BD,∴∠MBC=∠NCB,又∵BN∥AC,∴∠MCB=∠NBC,在△MBC和△NCB中,,∴△MBC≌△NCB(ASA),∴BM=CN,MC=NB,又∵BM=CM,∴BM=MC=CN=NB,∴四边形BNCM是菱形.【考点】本题主要考查了全等三角形的性质和判定和菱形的判定,熟练运用相关的判定与性质是解题的关键.5、∴抛物线的解析式为y=x(2)①∵A(1,2),B(7,2),当抛物线经过点A时,a=2,当抛物线经过点B时,2=49a,∴a=,∵若G与△ABC有交点,∴≤a≤2.②由题意当a=时,y=x2,当y=8时,8=x2,∴x>0,∴x=14,∴当反比例函数y=经过点(14,8)时k的值最大,此时k=112,∴k的最大值为112【考点】本题考查二次函数综合题、待定系数法、勾股定理等知识,解题的关键是理解题意,学会利用特殊点解决问题,属于中考压轴题.2.(1)证明见解析;(2)△EFG是等腰直角三角形;证明见解析;(3)AB最小值为【解析】【分析】延长BE,DG交于点H,先证△ABE≌△ADG,得BE=DG,∠ABE=∠ADG.结合∠ABD+∠ADB=90°,知∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即可得∠BHD=90°.从而得证;(2)延长BA,CD交于点H,由四边形ABCD是“等垂四边形”,AD≠BC知AB⊥CD,AB=CD,从而得∠HBC+∠HCB=90°,根据三个中点知EF=AB,GF=CD,EF∥AB,GF∥DC,据此得∠BGF=∠C,EFD=∠HBD,EF=GF.由∠EFG=∠EFD+∠DFG=∠ABD+∠DBC+∠FGB=∠ABD+∠DBC+∠C=∠HBC+∠HCB=90°可得答案;(3)延长BA,CD交于点H
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年深圳香蜜湖物业管理服务合同
- 2025年职业健康安全题库解析
- 2025年静脉输液耗材项目发展计划
- 2025年安全生产安全信息化题库
- 动物生育保健产品创新创业项目商业计划书
- 气雾培无公害蔬菜试验创新创业项目商业计划书
- 2025年专用X射线机项目合作计划书
- 社交媒体危机公关处理系统创新创业项目商业计划书
- 网络安全实战演练与应急响应培训创新创业项目商业计划书
- 智能汽车车联网技术资讯创新创业项目商业计划书
- 心肺复苏术课件2024新版
- 孕产妇危重症评审实施方案解读课件
- 高级高炉炼铁操作工技能鉴定考试题及答案
- 移民安置监督评估实施细则编写要点及内容、年度报告、生产生活水平本底调查报告、恢复情况跟踪调查报告提纲、常用表格
- 介绍除湿机施工方案
- DB13(J)-T 8580-2024 双面彩钢板复合风管技术规程
- 教育教学课件:暑假生活(英文版)
- JGJ153-2016 体育场馆照明设计及检测标准
- RV减速器核心零部件摆线轮如何通过数控铣削实现高效加工
- 大学生创业基础2000116-知到答案、智慧树答案
- 2024企业人力资源数字化转型白皮书
评论
0/150
提交评论