重难点解析北师大版9年级数学上册期末试卷含完整答案详解(历年真题)_第1页
重难点解析北师大版9年级数学上册期末试卷含完整答案详解(历年真题)_第2页
重难点解析北师大版9年级数学上册期末试卷含完整答案详解(历年真题)_第3页
重难点解析北师大版9年级数学上册期末试卷含完整答案详解(历年真题)_第4页
重难点解析北师大版9年级数学上册期末试卷含完整答案详解(历年真题)_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版9年级数学上册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、图,在△ABC中,AB=AC,四边形ADEF为菱形,O为AE,DF的交点,S△ABC=8,则S菱形ADEF=()A.4 B.4 C.4 D.42、如图所示,由7个相同的小正方体组合成一个立体图形,从它上面看到的平面图形是()A. B.C. D.3、若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1 B.﹣2 C.﹣1 D.24、若直角三角形的两边长分别是方程的两根,则该直角三角形的面积是(

)A.6 B.12 C.12或 D.6或5、如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则相同的视图是(

)A. B.C. D.6、如图,菱形的顶点在直线上,若,,则的度数为(

)A. B. C. D.二、多选题(6小题,每小题2分,共计12分)1、下列命题中不是真命题的是(

)A.两边相等的平行四边形是菱形B.一组对边平行一组对边相等的四边形是平行四边形C.两条对角线相等的平行四边形是矩形D.对角线互相垂直且相等的四边形是正方形2、如图,正方形ABCD中,CE平分∠ACB,点F在边AD上,且AF=BE.连接BF交CE于点G,交AC于点M,点P是线段CE上的动点,点N是线段CM上的动点,连接PM,PN.下列四个结论一定成立的是(

)A.CE⊥BF B.BE=AM C.AE+FM=AB D.PM+PN≥AC3、下列多边形中,一定不相似的是(

)A.两个矩形 B.两个菱形 C.两个正方形 D.两个平行四边形4、如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法正确的是()A.∠ABC=90° B.AC=BD C.OA=OB D.OA=AD5、如图,的两条中线,交于点,则下列结论正确的是(

)A. B.C. D.6、下列说法中,正确的是(

)A.两角对应相等的两个三角形相似B.两边对应成比例的两个三角形相似C.两边对应成比例且夹角相等的两个三角形相似D.三边对应成比例的两个三角形相似第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、如果一个直角三角形斜边上的中线与斜边所成的锐角为角,那么这个直角三角形的较小的内角是________.2、如图,在一块长为22m,宽为14m的矩形空地内修建三条宽度相等的小路(阴影部分),其余部分种植花草.若花草的种植面积为240m2,则小路的宽为________m.3、已知菱形的边长为,两条对角线的长度的比为3:4,则两条对角线的长度分别是_____________.4、正方形ABCD的边长为1,点P为对角线AC上任意一点,PE⊥AD,PF⊥CD,垂足分别是E,F.则PE+PF=_____.5、如图,D是的边BC上一点,,,.如果的面积为15,那么的面积为______.6、布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红—黄—蓝”的概率是__________.7、两个任意大小的正方形,都可以适当剪开,拼成一个较大的正方形,如用两个边长分别为,的正方形拼成一个大正方形.图中的斜边的长等于________(用,的代数式表示).8、如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m²,设道路的宽为xm,则根据题意,可列方程为_______.四、解答题(6小题,每小题10分,共计60分)1、如图,在平面直角坐标系中,△ABC的BC边与x轴重合,顶点A在y轴的正半轴上,线段OB,OC()的长是关于x的方程的两个根,且满足CO=2AO.(1)求直线AC的解析式;(2)若P为直线AC上一个动点,过点P作PD⊥x轴,垂足为D,PD与直线AB交于点Q,设△CPQ的面积为S(),点P的横坐标为a,求S与a的函数关系式;(3)点M的坐标为,当△MAB为直角三角形时,直接写出m的值.2、安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:(1)求与之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?3、用适当的方法解方程:(1).(2).4、如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当时,求的值;(2)如图②,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.

5、解下列方程:(1);(2)6、如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,连接PE,PB.(1)在AC上找一点P,使△BPE的周长最小(作图说明);(2)求出△BPE周长的最小值.-参考答案-一、单选题1、C【解析】【分析】根据菱形的性质,结合AB=AC,得出DF为△ABC的中位线,DF∥BC,,从而得出AE为△ABC的高,得出,再根据菱形的面积公式,即可得出菱形的面积.【详解】解:∵四边形ADEF为菱形,∴EF∥AB,DE∥AC,AF=EF=DE=AD,AE⊥DF,∴,,,,,∴CF=EF,DE=DB,,,∴DF∥BC,,,,,,,即,,故C正确.故选:C.【考点】本题主要考查了菱形的性质,中位线的性质,等腰三角形的性质和判断,平行线的性质,菱形的面积,三角形面积的计算,根据菱形的性质和等腰三角形的性质得出DF为△ABC的中位线,是解题的关键.2、A【解析】【分析】从上往下看称为俯视图.【详解】解:从上面看可到两行正方形,后排有3个正方形,前排靠左有2个正方形.故答案为:A.【考点】本题考查了三视图的知识,掌握俯视图为从物体的上面看得到的视图是解答本题的关键.3、C【解析】【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【详解】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选C.【考点】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.4、D【解析】【分析】根据题意,先将方程的两根求出,然后对两根分别作为直角三角形的直角边和斜边进行分情况讨论,最终求得该直角三角形的面积即可.【详解】解方程得,当3和4分别为直角三角形的直角边时,面积为;当4为斜边,3为直角边时根据勾股定理得另一直角边为,面积为;则该直角三角形的面积是6或,故选:D.【考点】本题主要考查了解一元二次方程及直角三角形直角边斜边的确定、直角三角形的面积求解,熟练掌握解一元二次方程及勾股定理是解决本题的关键.5、B【解析】【分析】判断出组合体的左视图、主视图及俯视图,即可作出判断.【详解】解:几何体的左视图和主视图是相同的,故选:B.【考点】本题考查了简单组合体的三视图,属于基础题,注意理解三视图观察的方向.6、B【解析】【分析】由∠MCN=180°,可求出∠BCD的度数,根据菱形的性质可得∠A的度数,再由AB=AD,进而可求出∠ABD的度数.【详解】∵四边形ABCD是菱形,∴∠A=∠BCD,AB=AD.∵∠1=50°,∠2=20°,∴∠BCD=180°-50°-20°=110°∴∠A=110°.∵AB=AD,∴∠ABD=∠ADB=(180°-110°)÷2=35°.故选B.【考点】本题考查了菱形的性质、三角形内角和定理的运用以及等腰三角形的判定和性质,熟记菱形的各种性质是解题的关键.二、多选题1、ABD【解析】【分析】利用平行四边形、矩形、菱形及正方形的判定方法分别判断即可.【详解】A选项:有一组邻边相等的平行四边形是菱形,故原命题错误,是假命题,符合题意;B选项:一组对边平行且相等的四边形是平行四边形,故原命题错误,是假命题,符合题意;C选项:两条对角线相等的平行四边形是矩形,故原命题正确,是真命题,不符合题意;D选项:两条对角线互相垂直且相等的平行四边形是正方形,故原命题错误,是假命题,符合题意.故选:ABD.【考点】考查了平行四边形、菱形、矩形和正方形的判定,解题关键是熟练掌握特殊四边形的判定方法.2、ABD【解析】【分析】由SAS可证△BAF≌△CBE,进而可证EG⊥BG,即CE⊥BF,故A正确;根据ASA可证△BCG≌△MCG,知∠CBG=∠CMG,因为∠CBG=∠AFM,∠AMF=∠CMG,可得∠AFM=∠AMF,即AM=AF,可证BE=AM,故B正确;因AB=AE+BE=AE+AM,故C不正确;当PN⊥MC时,PM+PN=BP+PN=BN最短,此时BN为△ABC底边AC上的高,则BN的长度为PM+PN的最小值,根据正方形的性质知,BN==BD=AC,因此PM+PN≥AC,故D正确.【详解】解:∵四边形ABCD是正方形∴AB=BC,∠BAF=∠CBE=90°在△BAF和△CBE中∴△BAF≌△CBE(SAS)∴∠BAF=∠ECB∵∠CBE=90°∴∠BEC+∠BCE=90°∴∠BEC+∠FBA=90°∴∠BGE=180°-(∠BEC+∠FBA)=90°∴EG⊥BG,即CE⊥BF,故A正确;∵CE平分∠ACB∴∠BCE=∠MCG∵CE⊥BF∴∠MGC=∠BGC=90°在△BCG和△MCG中∴△BCG≌△MCG(ASA)∴∠CBG=∠CMG∵正方形ABCD∴AD∥BC∴∠CBG=∠AFM∵∠AMF=∠CMG∴∠AFM=∠AMF∴AM=AF∵AF=BE∴BE=AM,故B正确;∵AB=AE+BE,BE=AM∴AE+AM=AB,故C不正确;连接BP,如图,∵△BCG≌△MVG∴BG=GM∵CE⊥BF∴CG垂直平分BM∴MP=BP当PN⊥MC时,PM+PN=BP+PN=BN最短,此时BN为△ABC底边AC上的高,则BN的长度为PM+PN的最小值,根据正方形的性质知,BN==BD=AC∴PM+PN≥AC,故D正确综上所述,一定成立的是ABD,故选:ABD.【考点】本题考查了全等三角形的判定与性质,正方形的性质,线段的垂直平分线,解题的关键是熟练掌握全等三角形的判定与性质.3、ABD【解析】【分析】利用相似多边形的对应边的比相等,对应角相等分析.【详解】解:要判断两个多边形是否相似,需要看对应角是否相等,对应边的比是否相等.矩形、菱形、平行四边形都属于形状不唯一确定的图形,即对应角、对应边的比不一定相等,故不一定相似,选项A、B、D符合题意;而两个正方形,对应角都是90°,对应边的比也都相等,故一定相似,选项C不符合题意.故选:ABD.【考点】本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边的比相等,对应角相等.两个条件必须同时具备.4、ABC【解析】【分析】矩形的性质:矩形的四个角都是直角,对边平行且相等,对角线相等且互相平分,根据矩形的性质逐一判断即可.【详解】解:四边形ABCD为矩形,故符合题意,而不一定成立,故不符合题意;故选:.【考点】本题考查的是矩形的性质,熟悉矩形的性质是解题的关键.5、ACD【解析】【分析】根据三角形中位线定理得到DE=BC,DE∥BC,根据三角形面积公式及相似三角形的性质进行计算,判断即可.【详解】∵AD=DB,AE=EC,∴DE=BC,DEBC,∴,A选项结论正确;∵DEBC,∴△BDE与△DCE的DE边上的高相等∴S△BDE=S△DCE∴S△AEB=S△BDE+S△DAE=S△DAE+S△DCE=S△ACD,B选项结论错误;∵DEBC,∴,C选项结论正确;∵DEBC,∴△DOE∽△COB,∴S△DOE:S△COB=(1:2)2=1:4,D选项结论正确;故选:ACD.【考点】本题考查的是相似三角形的判定和性质、三角形中位线定理的应用,掌握相似三角形的判定定理和性质定理是解题的关键.6、ACD【解析】【分析】根据相似三角形的判定定理判断即可.【详解】A

“两角对应相等的两个三角形相似”是正确的;B

“两边对应成比例的两个三角形相似”是错误的,还需添上条件“且夹角相等”才成立;C

“两边对应成比例且夹角相等的两个三角形相似”是正确的;D

“三边对应成比例的两个三角形相似”是正确的故选:ACD【考点】本题考查了相似三角形的判定定理,做题的关键是熟练掌握相似三角形的判定定理.三、填空题1、25【解析】【分析】由直角三角形斜边上的中线等于斜边的一半的性质,证明得到,再利用外角性质求出,再得到,从而得解.【详解】如图所示,∵是斜边上的中线,∴,∴,∵斜边上的中线与斜边所成的锐角为,即,∴,解得:,另一个锐角,∴这个直角三角形的较小内角是.故答案为:.【考点】本题考查了直角三角形的性质和外角的性质,比较基础.2、2【解析】【分析】设小路宽为xm,则种植花草部分的面积等同于长(22-x)m,宽(14-x)m的矩形的面积,根据花草的种植面积为240m2,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:设小路宽为xm,则种植花草部分的面积等同于长(22-x)m,宽(14-x)m的矩形的面积,依题意得:(22-x)(14-x)=240,整理得:x2-36x+68=0,解得:x1=2,x2=34(不合题意,舍去).故答案为:2.【考点】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.3、,【解析】【分析】如图BD:AC=3:4,AB=10cm,设BD=3x,则AC=4x,根据菱形的性质,DO=BO=,AO=CO=2x,在RtΔAOD中,AD2+DO2+AO2,,求出x,BD=3x,AC=4x即可.【详解】如图BD:AC=3:4,AB=10cm,设BD=3x,则AC=4x,根据菱形的性质,DO=BO=,AO=CO=2x,AC垂直BD在RtΔAOD中,AD2+DO2+AO2,,x=4,AC=4×4=16,BD=3×4=12,则两条对角线的长度分别是12cm,16cm.故答案为:12cm,16cm.【考点】本题考查菱形的对角线问题,掌握菱形的性质,利用对角线之间的关系,和勾股定理构造方程是解题关键.4、1【解析】【分析】证明四边形DEPF是矩形得PE=DF,证明△PFC是等腰直角三角形得PF=CF便可求得结果.【详解】解:∵四边形ABCD是正方形,∴∠ADC=90°,∠ACD=,∵PE⊥AD,PF⊥CD,∴四边形DEPF是矩形,∴PE=DF,∵∠ACD=45°,∠PFC=90°,∴PF=CF,∴PE+PF=DF+CF=CD=1,故答案为:1.【考点】本题主要考查了正方形的性质,矩形的性质与判定,等腰直角三角形的判定,关键是证明PE=DF,PF=CF.5、5【解析】【分析】先证明△ACD∽△BCA,再根据相似三角形的性质得到:△ACD的面积:△ABC的面积为1:4,再结合△ABD的面积为15,然后求出△ACD的面积即可.【详解】∵,,∴,∵,,∴,∴的面积,故答案是:5.【考点】本题主要考查了相似三角形的判定和性质、掌握相似三角形的面积比等于相似比的平方是解答本题的关键.6、【解析】【分析】列举出所有情况,看球的顺序依次是“红黄蓝”的情况数占所有情况数的多少即可.【详解】解:画出树形图:共有27种情况,球的顺序依次是“红黄蓝”的情况数有1种,所以概率为.故答案为:.【考点】考查用列树状图的方法解决概率问题;得到球的顺序依次是“红黄蓝”的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.7、【解析】【分析】根据题意及勾股定理可得BC2=;又因Rt△ABC的边BC在斜边AB上的射影为a,根据射影定理可得BC2=a•AB,由此即可解答.【详解】根据题意及勾股定理可得:BC2=;由题意可得:Rt△ABC的边BC在斜边AB上的射影为a,∴BC2=a•AB,即可得AB=.故答案为.【考点】本题考查射影定理的知识,注意掌握每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.8、(12-x)(8-x)=77【解析】【分析】道路外的四块土地拼到一起正好构成一个矩形,矩形的长和宽分别是(12-x)和(8-x),根据矩形的面积公式,列出关于道路宽的方程求解.【详解】道路的宽为x米.依题意得:(12-x)(8-x)=77,故答案为(12-x)(8-x)=77.【考点】本题考查了一元二次方程的应用,关键将四个矩形用恰当的方式拼成大矩形列出等量关系.四、解答题1、(1);(2);(3)m的值为-3或-1或2或7;【解析】【分析】(1)根据一元二次方程的解求出OB和OC的长度,然后得到点B,点C坐标和OA的长度,进而得到点A坐标,最后使用待定系数法即可求出直线AC的解析式;(2)根据点A,点B坐标使用待定系数法求出直线AB的解析式,根据直线AB解析式和直线AC解析式求出点P,Q,D坐标,进而求出PQ和CD的长度,然后根据三角形面积公式求出S,最后对a的值进行分类讨论即可;(3)根据△MAB的直角顶点进行分类讨论,然后根据勾股定理求解即可.(1)解:解方程得,,∵线段OB,OC()的长是关于x的方程的两个根,∴OB=1,OC=6,∴,,∵CO=2AO,∴OA=3,∴,设直线AC的解析式为,把点,代入得,解得,∴直线AC的解析式为;(2)解:设直线AB的解析式为y=px+q,把,代入直线AB解析式得,解得,∴直线AB的解析式为,∵PD⊥x轴,垂足为D,PD与直线AB交于点Q,点P的横坐标为a,∴,,,∴,,∴,当点P与点A或点C重合时,即当a=0或时,此时S=0,不符合题意,当时,,当时,,当时,,∴;(3)解:∵,,,∴,,,当∠MAB=90°时,,∴,解得,当∠ABM=90°时,,∴,解得m=7,当∠AMB=90°时,,∴,解得,,∴m的值为-3或-1或2或7.【考点】本题考查解一元二次方程、待定系数法求一次函数解析式、三角形面积公式、勾股定理,正确应用分类讨论思想是解题关键.2、(1);(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当,,当,;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:,根据图象可知:当,;当,;∴,解得:,∴与之间的函数关系式为;(2)由题意得:,整理得:,解得:.,∵让顾客得到更大的实惠,∴.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【考点】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.3、(1),;(2),【解析】【分析】将左边利用十字相乘法因式分解,继而可得两个关于的一元一次方程,分别求解即可得出答案;先移项,再将左边利用提公因式法因式分解,继而可得两个关于的一元一次方程,分别求解即可得出答案.(1)解:,,则或,解得,,所以,原方程的解为,;(2)解:,则,或,解得,.所以,原方程的解为,.【考点】本题考查了一元二次方程的解法,熟练掌握和运用一元二次方程的解法是解决本题的关键.4、(1)=;(2)证明见解析.【解析】【分析】(1)根据正方形的性质和相似三角形的判定定理,得△CEF∽△ADF,可得=,进而即可得到结论;(2)由AD∥CB,点E是BC的中点,得△EFC∽△DFA.CF:AF=EC:AD,由FG//AB,得CG:BG=CF:AF,进而即可得到结论.【详解】(1)∵,∴=.∵四边形ABCD是正方形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论