重难点解析鲁教版(五四制)8年级数学下册测试卷【必考】附答案详解_第1页
重难点解析鲁教版(五四制)8年级数学下册测试卷【必考】附答案详解_第2页
重难点解析鲁教版(五四制)8年级数学下册测试卷【必考】附答案详解_第3页
重难点解析鲁教版(五四制)8年级数学下册测试卷【必考】附答案详解_第4页
重难点解析鲁教版(五四制)8年级数学下册测试卷【必考】附答案详解_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

鲁教版(五四制)8年级数学下册测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、下列运算正确的是()A. B.=4 C. D.=42、如图,矩形中,,.点E,G分别在边,上,点F,H在对角线上.若四边形是菱形,则的长是()A.2 B. C. D.3、下列方程是一元二次方程的是()A.x(x+3)=0 B.﹣4y=0 C.2x=5 D.a+bx+c=04、正方形具有而矩形不一定有的性质是()A.对角线互相垂直 B.对角线相等C.对角互补 D.四个角相等5、如图,树AB在路灯O的照射下形成影子AC,已知路灯高m,树影m,树AB与路灯O的水平距离m,点C、A、P在同一水平线上,则树的高度AB长是()A.3m B.2m C.m D.m6、已知m,n是方程x2+2x﹣5=0的两个实数根,则下列选项错误的是()A.m+n=﹣2 B.mn=﹣5 C.m2+2m﹣5=0 D.m2+2n﹣5=07、如果,那么的值是()A. B. C. D.8、已知a、b、c是三个不全为0的实数,那么关于x的方程x2+(a+b+c)x+a2+b2+c2=0的根的情况是()A.有两个负根 B.有两个正根C.两根一正一负 D.无实数根第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,矩形纸片ABCD,AD=4,AB=2,点F在线段AD上,将△ABF沿BF向下翻折,点A的对应点E落在线段BC上,点M,N分别是线段AD与线段BC上的点,将四边形CDMN沿MN向上翻折,点C恰好落在线段BF的中点C'处,则线段MN的长为__________________.2、如图,在△ABC中,AB=AC=3,BC=4.若D是BC边上的黄金分割点,则△ABD的面积为_____.3、如图,正方形ABCD的边长为2,AC,BD交于点O,点E为△OAB内的一点,连接AE,BE,CE,OE,若∠BEC=90°,给出下列四个结论:①∠OEC=45°;②线段AE的最小值是﹣1;③△OBE∽△ECO;④OE+BE=CE.其中正确的结论有_____.(填写所有正确结论的序号)4、如图,在边长为6的等边△ABC中,D是边BC上一点,将△ABC沿EF折叠使点A与点D重合,若BD:DE=2:3,则CF=____.5、如图,在△ABC中,点D、E分别是AB、AC的中点,若的面积为,则四边形BDEC的面积为_____.6、如图,在平行四边形ABCD中,E是AB的延长线上的一点,DE与边BC相交于点F,,那么的值为________________.7、如图,已知AD为△ABC的角平分线,DE∥AB,如果=,那么=________________.三、解答题(7小题,每小题10分,共计70分)1、计算:(1);(2).2、如图,公路旁有两个高度相等的路灯AB、CD,小明上午上学时发现路灯AB在太阳光下的影子恰好落在路牌底部E处,他自己的影子恰好落在路灯CD的底部C处;晚自习放学时,站在上午同一个地方,发现在路灯CD的灯光下自己的影子恰好落在E处.(1)在图中画出小明的位置(用线段FG表示).(2)若上午上学时,高1米的木棒的影子为2米,小明身高为1.5米,他距离路牌底部E恰好2米,求路灯高.3、如果关于x的一元二次方程(,a,b,c是常数)有两个实数根,且其中一个根为另一个根的一半时,那么称这样的方程为“半根方程”.例如,一元二次方程的两个根是3和6,该方程可化简为,则方程就是半根方程.(1)请你再写出一个半根方程______(要求化成一般形式);(2)若关于x的方程是半根方程,求的值.4、请阅读下列材料:问题:如图1,点A,B在直线l的同侧,在直线l上找一点P,使得AP+BP的值最小.小军的思路是:如图2,作点A关于直线l的对称点,连接,则与直线l的交点P即为所求.请你参考小军同学的思路,探究并解决下列问题:(1)如图3,在图2的基础上,设与直线l的交点为C,过点B作BD⊥l,垂足为D.若CP=1,PD=2,AC=1,写出AP+BP的值为;(2)如图3,若AC=1,BD=2,CD=6,写出此时AP+BP的最小值;(3)求出的最小值.5、如图:正方形ABCD中,点E、F分别在边BC、CD上,BE=CF,连接AE,BF交于点O,点M为AB中点,连接OM,求证:.6、计算:7、如图,已知平行四边形ABCD中,M,N是BD上两点,且BM=DN,AC=2OM.(1)求证:四边形AMCN是矩形;(2)若∠BAD=135°,CD=2,AB⊥AC,求对角线MN的长.-参考答案-一、单选题1、A【解析】【分析】根据立方根的定义、算术平方根的定义、二次根式的乘除运算法则即可求出答案.【详解】解:A、原式=,故该选项符合题意;B、≠4,故该选项不符合题意;C、原式==2,故该选项不符合题意;D、原式=2,故该选项不符合题意.故选:A.【点睛】本题考查了立方根、算术平方根、二次根式的乘除运算法则,本题属于基础题型.2、C【解析】【分析】连接EG交AC于O,根据菱形和矩形的性质证明△CEO≌△AGO,推出AO=CO,由勾股定理求出AC得到AO,再证明△AOG∽△ADC,得到,代入数值即可求出AG.【详解】解:连接EG交AC于O,∵四边形是菱形,∴EG⊥FH,OE=OG,∵四边形是矩形,∴∠B=∠D=90°,,∴∠ACB=∠CAD,∴△CEO≌△AGO,∴AO=CO,∵,∴,∵∠AOG=∠D=90°,∠OAG=∠CAD,∴△AOG∽△ADC,∴,∴,∴AG=故选:C.【点睛】此题考查了菱形的性质,矩形的性质,勾股定理,全等三角形的判定及性质,相似三角形的判定及性质,是图形类的综合题,熟练掌握各知识点是解题的关键.3、A【解析】【分析】根据含有一个未知数且含有未知数的项的最高次数是2的整式方程去判定即可.【详解】∵x(x+3)=0,∴+3x=0,∴A是一元二次方程;∵﹣4y=0中,含有两个未知数,∴B不是一元二次方程;∵2x=5是一元一次方程,∴C不是一元二次方程;∵a+bx+c=0中,没有说明a≠0,∴D不是一元二次方程;故选A.【点睛】本题考查了一元二次方程的定义即含有一个未知数且含有未知数的项的最高次数是2的整式方程,正确理解定义是解题的关键.4、A【解析】【分析】根据正方形的性质,矩形的性质逐一进行判断即可.【详解】解:A中对角线互相垂直,是正方形具有而矩形不具有,故符合题意;B中对角线相等,正方形具有而矩形也具有,故不符合题意;C中对角互补,正方形具有而矩形也具有,故不符合题意;D中四个角相等,正方形具有而矩形也具有,故不符合题意;故选:A.【点睛】本题考查了正方形的性质,矩形的性质.解决本题的关键是对正方形,矩形性质的灵活运用.5、B【解析】【分析】结合题意,根据相似三角形的性质,通过证明,得,根据相似比计算,即可得到答案.【详解】根据题意,得:∴∵∴∴∵m,m∴∴故选:B.【点睛】本题考查了相似三角形的知识;解题的关键是熟练掌握相似三角形的性质,从而完成求解.6、D【解析】【分析】利用根与系数的关系及一元二次方程的解的定义求出答案即可判断.【详解】解:∵m、n是方程x2+2x﹣5=0的两个实数根,∴mn=﹣5,m+n=﹣2,m2+2m﹣5=0,n2+2n﹣5=0,∴选项A、B、C正确,选项D错误;故选:D.【点睛】本题主要考查了根与系数的关系及一元二次方程的解的定义,解题的关键是熟练运用一元二次方程的根与系数的关系,本题属于基础题型.7、A【解析】【分析】根据已知条件设x=3k,y=2k,再代入求出答案即可.【详解】解:∵,∴设x=3k,y=2k,则,故选:A.【点睛】本题主要考查了比例的性质,正确用一个未知数k表示出x,y的值是解题关键.8、D【解析】【分析】先计算出Δ=(a+b+c)2﹣4(a2+b2+c2)=﹣3a2﹣3b2﹣3c2+2ab+2bc+2ac,然后进行配方得到Δ=﹣(a﹣c)2﹣(b﹣c)2﹣(a﹣b)2﹣a2﹣b2﹣c2,再根据a、b、c是三个不全为0的实数,即可判断Δ<0,从而得到方程根的情况.【详解】解:∵Δ=(a+b+c)2﹣4(a2+b2+c2)=﹣3a2﹣3b2﹣3c2+2ab+2bc+2ac=﹣(a﹣c)2﹣(b﹣c)2﹣(a﹣b)2﹣a2﹣b2﹣c2,而a、b、c是三个不全为0的实数,∴(a﹣c)2﹣(b﹣c)2﹣(a﹣b)2﹣≤0,-a2﹣b2﹣c2<0,∴Δ<0,∴原方程无实数根.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的根的判别式△=b2-4ac,当△>0,原方程有两个不相等的实数根;当△=0,原方程有两个相等的实数根;当△<0,原方程没有实数根;将代数式进行合理变形判断△的正负性是解题的关键.二、填空题1、【解析】【分析】先判断出四边形ABEF是正方形,进而求出BF=2,得出BC'=,过点C'作C'H⊥BC于H,CC'与MN的交点记作点K,进而求出BH=1,再用勾股定理求出CC'=,进而得出CK=,再用勾股定理求出CN=,最后用面积建立方程求出MN即可.【详解】解:如图,∵四边形ABCD是矩形,∴∠A=∠ABC=∠D=90°,CD=AB,BC=AD=4,∵2AB=4,∴AB=2,∴CD=2,∵将△ABF沿BF向下翻折,点A的对应点E落在线段BC上,∴∠BEF=∠A=90°,AB=BE,∴四边形ABEF是正方形,∴BF是正方形ABEF的对角线,∴∠EBF=45°,BF=AB=2,∵C'是BF的中点,∴BC'=BF=,过点C'作C'H⊥BC于H,CC'与MN的交点记作点K,在Rt△BHC'中,BH=C'H=BC'=1,∴CH=BC﹣BH=3,在Rt△CHC'中,CC'===,由折叠知,CK=CC'=,设CN=x,则HN=3﹣x,∵将四边形CDMN沿MN向上翻折,∴CC'⊥MN,C'N=CN=x,在Rt△C'HN中,根据勾股定理得,C'H2+HN2=C'N2,∴12+(3﹣x)2=x2,∴x=,∴CN=,连接CM,∵S△CMN=CN•CD=MN•CK,∴MN===,故答案为.【点睛】此题主要考查了折叠的性质,矩形的性质,勾股定理和面积法解题,作出辅助线构造直角三角形求出CC'是解题的关键所在.2、5﹣或3﹣5【解析】【分析】过作于,先由等腰三角形的性质得,由勾股定理求出,再求出的面积,然后由黄金分割的定义得或,进而得出答案.【详解】解:过作于,如图所示:,,,的面积,是边上的黄金分割点,当时,,,的面积;当时,,,,的面积;故答案为:或.【点睛】本题考查了黄金分割、等腰三角形的性质、勾股定理以及三角形面积等知识;解题的关键是熟练掌握黄金分割的定义和等腰三角形的性质.3、①②④【解析】【分析】通过证明点E,点B,点C,点O四点共圆,可得∠OEC=∠OBC=45°,故①正确;由题意可得点E在直径为BC的圆上,当点E在AF上时,AE有最小值,由勾股定理可得AE的最小值为,故②正确;由圆周角定理可得∠BOE≠∠OEC,则∠COE≠∠BEO,即△OBE与△ECO不相似,故③错误;由“SAS”可证△COH≌△BOE,可得BE=CH,由线段的和差关系EC=BE+OE,故④正确,即可求解.【详解】解:∵四边形ABCD是正方形,∴∠BOC=90°,∠ACB=∠DBC=45°,∵∠BEC=90°,∴∠CEB=∠BOC,∴点E,点B,点C,点O四点共圆,∴∠OEC=∠OBC=45°,故①正确;∵∠BEC=90°,∴点E在直径为BC的圆上,如图,取BC的中点F,连接AF,EF,∴EF=BF=FC=1,在△AFE中,AE>AFEF,∴当点E在AF上时,AE有最小值,此时:AF=,∴AE的最小值为,故②正确;∵点E,点B,点C,点O四点共圆,∴∠BOE=∠BCE<∠BCO=45°,∠OEC=∠CBO=45°,∴∠BOE≠∠OEC,∴∠COE≠∠BEO,∴△OBE与△ECO不相似,故③错误;如图,过点O作OH⊥OE,交CE于H,∵OH⊥OE,∠OEC=45°,∴∠OEC=∠OHE=45°,∴OE=OH,∴EH=OE,∵∠EOH=∠BOC=90°,∴∠BOE=∠COH,又∵OB=OC,∴△COH≌△BOE(SAS),∴BE=CH,∴EC=BE+EH=BE+OE,故④正确,故答案为:①②④.【点睛】本题是四边形综合题,考查了正方形的性质,相似三角形的判定,勾股定理,全等三角形的判定和性质等知识,灵活运用这些性质解决问题是解题的关键.4、3.6【解析】【分析】根据折叠的性质可得∠EDF=∠A,DF=AF,再由等边三角形的性质可得∠EDF=60°,∠BDE+∠CDF=∠BDE+∠BED=120°,从而得到∠CDF=∠BED,进而得到△BDE∽△CFD,再由BD:DE=2:3,可得到,即,即可求解.【详解】解:根据题意得:∠EDF=∠A,DF=AF,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∴∠EDF=60°,∴∠BDE+∠CDF=180°-∠EDF=120°,∵∠B=60°,∴∠BDE+∠BED=180°-∠B=120°,∴∠BDE+∠CDF=∠BDE+∠BED,∴∠CDF=∠BED,∴△BDE∽△CFD,∴,即,∵等边△ABC的边长为6,∴,解得:.故答案为:3.6【点睛】本题主要考查了等边三角形的性质,图形的折叠,相似三角形的判定和性质,熟练掌握等边三角形的性质,图形的折叠的性质,相似三角形的判定和性质是解题的关键.5、【解析】【分析】根据三角形中位线定理可得,DE∥BC,从而得到△ADE∽△ABC,再根据相似三角形的性质,可得,即可求解.【详解】解:∵点D、E分别是AB、AC的中点,∴,DE∥BC,∴△ADE∽△ABC,∴,∵的面积为,∴,∴四边形BDEC的面积为.故答案为:【点睛】本题主要考查了三角形中位线定理,相似三角形的性质,熟练掌握三角形中位线定理,相似三角形的性质是解题的关键.6、【解析】【分析】由四边形ABCD是平行四边形,可得ABCD,CD=AB,即可证得△BEF∽△CDF,然后由相似三角形的对应边成比例,即可求得答案.【详解】解:四边形ABCD是平行四边形,∴ABCD,CD=AB,∴△BEF∽△CDF,∵,∴,∴.故答案为:.【点睛】此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.7、【解析】【分析】由DE∥AB可得,进而结合题干中的条件得到AE=DE,即可求解.【详解】解:∵DE∥AB,∴,∴,又∵=,∴=,又∵AD为△ABC的角平分线,DE∥AB,∴∠ADE=∠BAD=∠DAE,∴AE=DE,∴=,故答案为:.【点睛】本题主要考查了三角形相似的判定与性质、角平分线的定义;熟练掌握相似三角形的判定与性质是解决问题的关键.三、解答题1、(1);(2).【解析】【分析】(1)先化简绝对值,零指数幂,负指数幂,合并即可;(2)化除为乘,根据乘法分配律展开分别化简即可,【详解】解:(1),=,=;(2).=,=,=,=.【点睛】本题考查二次根式混合运算,零指数幂,负指数幂,乘法分配律,掌握运算法则是解题关键.2、(1)见解析(2)路灯高3.75米【解析】【分析】(1)作出太阳光线,过点作的平行线,与的交点即为小明的位置;(2)易得小明的影长,利用可得路灯的长度.(1)解:如图,FG就是所求作的线段.(2)上午上学时,高1米的木棒的影子为2米,,,,,,,,解得,路灯高3.75米.【点睛】综合考查了中心投影和平行投影的运用,注意平行投影的光线是平行的;用到的知识点为:在相同时间段,垂直于地面的物高与影长是成比例的;两三角形相似,对应边成比例.3、(1)(答案不唯一)(2)【解析】【分析】(1)根据例题写出一个半根方程即可;(2)根据因式分解法解一元二次方程,进而根据半根方程的定义求得的关系,结合分式有意义的条件,化简分式即可.(1)解:例如的两个根是,该方程可化简为,则就是半根方程故答案为:(答案不唯一)(2)由得或,解得,.因为该方程是半根方程,所以或,所以或.由于使分式有意义,故,∴,∴.【点睛】本题考查了新定义,解一元二次方程,分式有意义的条件,掌握解一元二次方程是解题的关键.4、(1)3(2)3(3)【解析】【分析】(1)作AEl,交BD的延长线于E,根据已知条件求得△CPA’是等腰直角三角形,然后得到△BEA’是等腰直角三角形,从而求得A’B的值;(2)作AEl,交BD的延长线于E,根据已知条件求得BE、A’E,然后根据勾股定理即可求得A’B,从而求得AP+BP的值;(3)设AC=5m−3,PC=1,则PA=;设BD=8−5m,PD=3,则PB=,结合(2)即可求解.(1)解:作A’El,交BD的延长线于E,如图3,∵AA’⊥l,BD⊥l,∴DE⊥A’E∴四边形A’EDC是矩形,∵CP=AC=1∴CP=A’C∴△CPA’是等腰直角三角形,∴∠CA’P=45°∵A’El,∴∠CA’E=90°∴∠BA’E=45°∴△BEA’是等腰直角三角形,∵A’E=CP+DP=3∴BE=A’E=3∴A’B=∴AP+BP=A’B=3故答案为:3;(2)作A’El,交BD的延长线于E,如图3,∵AA’⊥l,BD⊥l,∴DE⊥A’E∴四边形A’EDC是矩形,∴A’E=DC=6,DE=A’C=AC=1,∵BD=2,∴BD+AC=BD+DE=3,即BE=3,在Rt△A’BE中,A’B=,∴AP+BP=A’P+BP=A’B=3,故答案为:3;(3)如图3,设AC=5m−3,PC=1,则PA==;设BD=8−5m,PD=3,则PB==,∵DE=AC=5m−3,∴BE=BD+DE=5,A’E=CD=PC+PD=4,∴PA+PB的最小值为A’B=,∴为.【点睛】本题考查了轴对称−最短路线问题,熟练掌握轴对称的性质和勾股定理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论