中考数学总复习《旋转》测试卷含完整答案详解【易错题】_第1页
中考数学总复习《旋转》测试卷含完整答案详解【易错题】_第2页
中考数学总复习《旋转》测试卷含完整答案详解【易错题】_第3页
中考数学总复习《旋转》测试卷含完整答案详解【易错题】_第4页
中考数学总复习《旋转》测试卷含完整答案详解【易错题】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学总复习《旋转》测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形 B.等边三角形 C.菱形 D.平行四边形2、如图,在中,,将绕点逆时针旋转得到,其中点与点是对应点,且点在同一条直线上;则的长为(

)A. B. C. D.3、如图,矩形ABCD中,AD=2,AB=,对角线AC上有一点G(异于A,C),连接DG,将△AGD绕点A逆时针旋转60°得到△AEF,则BF的长为(

)A. B.2 C. D.24、下列命题是真命题的是(

)A.一个角的补角一定大于这个角 B.平行于同一条直线的两条直线平行C.等边三角形是中心对称图形 D.旋转改变图形的形状和大小5、在平面直角坐标系中,点关于原点对称点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,菱形的边长为,,边在轴上,若将菱形绕点逆时针旋转75°,得到菱形,则点的对应点的坐标为______.2、如图:为五个等圆的圆心,且在一条直线上,请在图中画一条直线,将这五个圆分成面积相等的两个部分,并说明这条直线经过的两点是___________.3、如图,在Rt△ABC中,∠ACB=90°,,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.4、如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=_________.5、若点与关于原点对称,则__.三、解答题(5小题,每小题10分,共计50分)1、如图,在由边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)画出△ABC关于点C成中心对称的△A'B'C(其中A'是点A的对应点,B'是点B的对应点);(2)用无刻度的直尺作出一个格点O,使得OA=OB.2、如图,已知线段OA在平面直角坐标系中,O是原点.(1)将OA绕点O顺时针旋转60°得到,过点作轴,垂足为B.请在图中用不含刻度的直尺和圆规分别作出、;(2)若,则的面积是______.3、在RtABC中,∠ABC=90°,∠A=α,O为AC的中点,将点O沿BC翻折得到点,将ABC绕点顺时针旋转,使点B与C重合,旋转后得到ECF.(1)如图1,旋转角为.(用含α的式子表示)(2)如图2,连BE,BF,点M为BE的中点,连接OM,①∠BFC的度数为.(用含α的式子表示)②试探究OM与BF之间的关系.(3)如图3,若α=30°,请直接写出的值为.4、如图是由边长为的小正方形构成的的网格,线段的端点均在格点上,请按要求画图画出一个即可.(1)在图①中以为边画一个四边形,使它的另外两个顶点在格点上,且该四边形是中心对称图形,但不是轴对称图形;(2)在图②中以为对角线画一个四边形,使它的另外两个顶点在格点上,且所画四边形既是轴对称图形又是中心对称图形.5、在平面直角坐标系xOy中,的顶点坐标分别是,,.(1)按要求画出图形:①将向右平移6个单位得到;②再将绕点顺时针旋转90°得到;(2)如果将(1)中得到的看成是由经过以某一点M为旋转中心旋转一次得到的,请写出M的坐标.-参考答案-一、单选题1、C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选C.【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、A【解析】【分析】根据旋转的性质说明△ACC′是等腰直角三角形,且∠CAC′=90°,理由勾股定理求出CC′值,最后利用B′C=CC′-C′B′即可.【详解】解:根据旋转的性质可知AC=AC′,∠ACB=∠AC′B′=45°,BC=B′C′=1,∴△ACC′是等腰直角三角形,且∠CAC′=90°,∴CC′==4,∴B′C=4-1=3.故选:A.【考点】本题主要考查了旋转的性质、勾股定理,在解决旋转问题时,要借助旋转的性质找到旋转角和旋转后对应的量.3、A【解析】【分析】过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,△AGD绕点A逆时针旋转60°得到△AEF,得∠FAD=60°,AF=AD=2,又由四边形ABCD是矩形,∠BAD=90°,得到∠FAH=30°,在Rt△AFH中,FH=AF=1,由勾股定理得AH=,得到BH=AH+AB=2,再由勾股定理得BF=.【详解】解:如图,过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,∵△AGD绕点A逆时针旋转60°得到△AEF∴∠FAD=60°,AF=AD=2,∵四边形ABCD是矩形∴∠BAD=90°∴∠BAF=∠FAD+∠BAD=150°∴∠FAH=180°-∠BAF=30°在Rt△AFH中,FH=AF=1由勾股定理得AH=在Rt△BFH中,FH=1,BH=AH+AB=2由勾股定理得BF=故BF的长.故选:A【考点】本题考查了图形的旋转,矩形的性质,含30度角的直角三角形的性质,勾股定理等知识,解决此题的关键在于作出正确的辅助线.4、B【解析】【分析】由补角的定义、平行线公理,中心对称图形的定义、旋转的性质分别进行判断,即可得到答案.【详解】解:A、一个角的补角不一定大于这个角,故A错误;B、平行于同一条直线的两条直线平行,故B正确;C、等边三角形是轴对称图形,不是中心对称图形,故C错误;D、旋转不改变图形的形状和大小,故D错误;故选:B.【考点】本题考查了补角的定义、平行线公理,中心对称图形的定义、旋转的性质,以及判断命题的真假,解题的关键是熟练掌握所学的知识,分别进行判断.5、D【解析】【分析】先依据,即可得出点P所在的象限,再根据两个点关于原点对称时,它们的坐标符号相反,即可得出结论.【详解】解:∵,∴点在第二象限,∴点关于原点对称点在第四象限.故选D.【考点】本题主要考查了关于原点对称的两个点的坐标特征,明确关于原点对称的两个点的横、纵坐标均互为相反数是解答的关键.二、填空题1、【解析】【分析】根据菱形的性质可得出∠AOC=60°,则三角形OAC为等边三角形,即AC=,根据菱形对角线的性质可得出∠AOE=30°,根据勾股定理可得OE,OB,再根据旋转的性质可得OB=OB1,∠B1OF=45°,根据勾股定理即可得出OF与B1F的长度,即可得出答案.【详解】解:如图,连接AC与OB相交于点E,过点B1作B1F⊥x轴,垂足为F,∵四边形OABC为菱形,,OA=OC,∴△AOC是等边三角形,OC=OA=AC=,∵AC⊥OB,在Rt△OAE中,OA=,AE=AC=,∴OE=AE=,∴OB=,∵∠COB=∠AOC=30°,∠BOB1=75°,∴∠B1OF=180°-60°-∠BOB1=180°-60°-75°=45°,在Rt△B1OF中,OB1=OB=,OF=B1F,∴OF2+B1F2=OB12,可得OF=B1F=,∵点B1在第二象限,∴点B1的坐标为.故答案为:.【考点】本题主要考查了菱形及旋转的性质,熟练应用相关性质进行计算是解决本题的关键.2、D与【解析】【分析】平分5个圆,那么每份应是2.5,由过平行四边形中心的任意直线都能平分平行四边形的面积,应先作出平行四边形的中心,再把第5个圆平分即可.【详解】点D恰好是平行四边形的中心,则这里过D和O3即可.故答案为:D和O3.【考点】本题考查了作图-应用与设计作图以及平行四边形的判定和性质,正确的作出图形是解题的关键.3、或##或【解析】【分析】连接,根据题意可得,当∠ADQ=90°时,分点在线段上和的延长线上,且,勾股定理求得即可.【详解】如图,连接,在Rt△ABC中,∠ACB=90°,,,,,根据题意可得,当∠ADQ=90°时,点在上,且,,如图,在中,,在中,故答案为:或.【考点】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点的位置是解题的关键.4、【解析】【详解】∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为:.5、【解析】【分析】根据原点对称的点的特征求解即可;【详解】点与点关于原点对称,,,故.故答案为:.【考点】本题主要考查了关于原点对称的点的坐标,准确计算是解题的关键.三、解答题1、(1)详见解析(2)详见解析【解析】【分析】(1)根据中心对称定义作图即可;(2)作AB的垂直平分线即可;(1)解:如图,△A'B'C为所作;(2)解:如图,点O或O′为所作.【考点】本题考查了复杂-作图,掌握中心对称和垂直平分线的定义和画法是解题关键2、(1)见详解(2)【解析】【分析】(1)利用等边三角形的性质的性质作OA′,利用垂直平分线的作法求B点;(2)设A′(a,b),如图过A作AC垂直x轴于C,过A′作A′⊥AC于D,连接AA′;在Rt△ADA′和Rt△OBA′中利用勾股定理建立方程组,解方程即可解答;(1)解:分别以O、A为圆心,以AO为半径作弧,两弧交于点A′,连接OA′即为所求线段;以A′为圆心,适当长度为半径作弧交x轴于点E、F,再分别以点E、F为圆心,以EA′、FA′为圆心作弧,两弧交于点C,连接CA′交x轴于点B,A′B即为所求线段;(2)解:设A′(a,b),如图过A作AC垂直x轴于C,过A′作A′D⊥AC于D,连接AA′,则四边形DCBA′是矩形;由(1)作图可得,OA=OA′=AA′==∵A(-2,6),A′(a,b),∴Rt△ADA′中,AD=6-b,DA′=a+2,AA′2=(6-b)2+(a+2)2=40,①Rt△OBA′中,OB=a,BA′=b,OA′2=a2+b2=40,②∴(6-b)2+(a+2)2=a2+b2,解得:a=3b-10,代入②,(3b-10)2+b2=40,b2-6b+6=0解得:b=,b=时,a=,符合题意;b=时,a=,不符合题意;∴A′(,),的面积=×()×()=;【考点】本题考查了旋转作图,等边三角形的判定和性质,垂直平分线的作法,勾股定理,矩形的判定和性质,一元二次方程的解法;利用勾股定理构建方程是解题关键.3、(1);(2)①;②;(3)【解析】【分析】(1)连接OB,,,由,O为BC的中点,得到,则,,再由旋转的性质可得,,由此求解即可;(2)①连接,,由(1)可知(因为也是旋转角),由旋转的性质可得,,则,可以得到,再由可以得到,由此即可求解;②连接OB,OE延长OM交EF于N,由①得,由旋转的性质可得,,然后证明,,得到,则,再证明△OBM≌△NEM得到,,从而推出MN为△BFE的中位线,得到,则;(3)连接与BF交于H,由,,可得,,由含30度角的直角三角形的性质可以得到,,再由勾股定理可以得到,由此即可得到答案.【详解】解:(1)如图所示,连接OB,,,∵,O为BC的中点,∴,∴,∴,∵将点O沿BC翻折得到点,∴,由旋转的性质可得,,∴,∴旋转角为,故答案为:;(2)①如图所示,连接,,由(1)可知(因为也是旋转角),由旋转的性质可得,,∴,∴,∵,∴,故答案为:;②如图所示,连接OB,OE延长OM交EF于N,由①得,由旋转的性质可得,,∵,∴,∴,∵,∴,∴,∴,∴,∴∵M为BE的中点,∴,在△OBM和△NEM中,,∴△OBM≌△NEM(SAS),∴,,∴,∴N为EF的中点,∴MN为△BFE的中位线,∴,∴;(3)如图所示,连接与BF交于H,∵,,∴,,∴,∵,∴,∴,∵,∴,∵,,∴,∵,∴.故答案为:.【考点】本题主要考查了旋转的性质,等腰三角形的性质与判定,直角三角形斜边上的中线,三角形中位线定理,含30度角的直角三角形的性质,勾股定理,平行线的性质与判定等等,解题的关键在于能够熟练掌握旋转的性质.4、(1)见解析;(2)见解析【解析】【分析】(1)根据旋转和轴对称的性质即可在图中以为边画一个四边形,使它的另外两个顶点在格点上,且该四边形是中心对称图形,但不是轴对称图形;(2)根据轴对称性质和中心对称性质即可在图中以为对角线画一个四边形,使它的另外两个顶点在格点上,且所画四边形既是轴对称图形又是中心对称图形.(1)如图,四边形即为所求;(2)如图,四边形即为所求.【考点】本题主要考查作图的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论