




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市西城区育才学校7年级数学下册第四章三角形专项测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、一个三角形的两边长分别为5和2,若该三角形的第三边的长为偶数,则该三角形的第三边的长为()A.6 B.8 C.6或8 D.4或62、如图,△ABC中,D,E分别为BC,AD的中点,若△CDE的面积使2,则△ABC的面积是()A.4 B.5 C.6 D.83、如图,在中,已知点,,分别为,,的中点,且,则的面积是()A. B.1 C.5 D.4、下列四个图形中,BE不是△ABC的高线的图是()A. B.C. D.5、如图,一扇窗户打开后,用窗钩AB可将其固定()A.三角形的稳定性B.两点之间线段最短C.四边形的不稳定性D.三角形两边之和大于第三边6、如图,∠BAD=90°,AC平分∠BAD,CB=CD,则∠B与∠ADC满足的数量关系为()A.∠B=∠ADC B.2∠B=∠ADCC.∠B+∠ADC=180° D.∠B+∠ADC=90°7、在△ABC中,若AB=3,BC=4,且周长为奇数,则第三边AC的长可以是()A.1 B.3 C.4 D.58、如图,点O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=8,OB=3,则OC的长为()A.3 B.4 C.5 D.69、一把直尺与一块三角板如图放置,若,则()A.120° B.130° C.140° D.150°10、一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、在△ABC中,若AC=3,BC=7则第三边AB的取值范围为________.2、如图,在△ABC中,D是AC延长线上一点,∠A=50°,∠B=70°,则∠BCD=__________°.3、已知三角形的三边分别为n,5,7,则n的范围是_____.4、如图,要测量水池的宽度,可从点出发在地面上画一条线段,使,再从点观测,在的延长线上测得一点,使,这时量得,则水池宽的长度是______m.5、如图,,,,则、两点之间的距离为______.6、如图,已知AC与BD相交于点P,ABCD,点P为BD中点,若CD=7,AE=3,则BE=_________.7、如图,Rt△ABC中,∠ACB=90°,AB=5,BC=3,将斜边AB绕点A顺时针旋转90°至AB′,连接B'C,则△AB′C的面积为_____.8、如图,于点D,于点E,BD,CE交于点F,请你添加一个条件:______(只添加一个即可),使得≌9、如图,AB,CD相交于点O,,请你补充一个条件,使得,你补充的条件是______.10、如图,在ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且ABC的面积等于24cm2,则阴影部分图形面积等于_____cm2三、解答题(6小题,每小题10分,共计60分)1、如图,ABCF,E为DF的中点,AB=20,CF=15,求BD的长度.2、在边长为10厘米的等边三角形△ABC中,如果点M,N都以3厘米/秒的速度匀速同时出发.(1)若点M在线段AC上由A向C运动,点N在线段BC上由C向B运动.①如图①,当BD=6,且点M,N在线段上移动了2s,此时△AMD和△BND是否全等,请说明理由.②求两点从开始运动经过几秒后,△CMN是直角三角形.(2)若点M在线段AC上由A向点C方向运动,点N在线段CB上由C向点B方向运动,运动的过程中,连接直线AN,BM,交点为E,探究所成夹角∠BEN的变化情况,结合计算加以说明.3、如图,已知点B,F,C,E在同一直线上,AB∥DE,BF=CE,AB=ED,求证:∠A=∠D.4、如图,已知AB=AC,BD=CE,证明△ABE≌△ACD.5、如图,在中,、分别是上的高和中线,,,求的长.6、如图,在△ABC中,AB=AC,∠BAC=30°,点D是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)求∠ADB的度数;(2)线段DE,AD,DC之间有什么数量关系?请说明理由.(提示:在线段DE上截取线段EM=BD,连接线段AM或者在线段DE上截取线段DM=AD连接线段AM).-参考答案-一、单选题1、D【分析】根据三角形两边之和大于第三边确定第三边的范围,根据题意计算即可.【详解】解:设三角形的第三边长为x,则5﹣2<x<5+2,即3<x<7,∵三角形的第三边是偶数,∴x=4或6,故选:D.【点睛】本题考查了三角形三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.2、D【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可求出的面积.【详解】∵AD是BC上的中线,∴,∵CE是中AD边上的中线,∴,∴,即,∵的面积是2,∴.故选:D.【点睛】本题考查的是三角形的中线的性质,三角形一边上的中线把原三角形分成的两个三角形的面积相等.3、B【分析】根据三角形面积公式由点为的中点得到,同理得到,则,然后再由点为的中点得到.【详解】解:点为的中点,,点为的中点,,,点为的中点,.故选:.【点睛】本题考查了三角形的中线与面积的关系,解题的关键是掌握是三角形的中线把三角形的面积平均分成两半.4、C【分析】利用三角形的高的定义可得答案.【详解】解:BE不是△ABC的高线的图是C,故选:C.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.5、A【分析】由三角形的稳定性即可得出答案.【详解】一扇窗户打开后,用窗钩AB可将其固定,故选:A.【点睛】本题考查了三角形的稳定性,加上窗钩AB构成了△AOB,而三角形具有稳定性是解题的关键.6、C【分析】由题意在射线AD上截取AE=AB,连接CE,根据SAS不难证得△ABC≌△AEC,从而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,证得∠B=∠CDE,即可得出结果.【详解】解:在射线AD上截取AE=AB,连接CE,如图所示:∵∠BAD=90°,AC平分∠BAD,∴∠BAC=∠EAC,在△ABC与△AEC中,,∴△ABC≌△AEC(SAS),∴BC=EC,∠B=∠AEC,∵CB=CD,∴CD=CE,∴∠CDE=∠CED,∴∠B=∠CDE,∵∠ADC+∠CDE=180°,∴∠ADC+∠B=180°.故选:C.【点睛】本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE,CE.7、C【分析】先求解的取值范围,再利用周长为奇数,可得为偶数,从而可得答案.【详解】解:AB=3,BC=4,即△ABC周长为奇数,而为偶数,或或不符合题意,符合题意;故选C【点睛】本题考查的是三角形三边的关系,掌握“三角形的任意两边之和大于第三边,任意两边之差小于第三边”是解本题的关键.8、C【分析】证明△AOB≌△COD推出OB=OD,OA=OC,即可解决问题.【详解】解:∵∠AOC=∠BOD,∴∠AOC+∠COB=∠BOD+∠COB,即∠AOB=∠COD,∵∠A=∠C,CD=AB,∴△AOB≌△COD(AAS),∴OA=OC,OB=OD,∵AD=8,OB=3,∴OC=AO=AD-OD=AD-OB=5.故选C.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题.9、B【分析】由BC∥ED,得到∠2=∠CBD,由三角形外角的性质得到∠CBD=∠1+∠A=130°,由此即可得到答案.【详解】解:如图所示,由题意得:∠A=90°,BC∥EF,∴∠2=∠CBD,又∵∠CBD=∠1+∠A=130°,∴∠2=130°,故选B.【点睛】本题主要考查了三角形外角的性质,平行线的性质,熟知相关知识是解题的关键.10、C【分析】先根据三角形的三边关系定理求得第三边的取值范围;再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:7-3<a<3+7,即4<a<10,∵a为整数,∴a的最大值为9,则三角形的最大周长为9+3+7=19.故选:C.【点睛】本题考查了三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.二、填空题1、4<AB<10【分析】根据三角形的三边关系,直接求解即可.【详解】解:∵在△ABC中,AC=3,BC=7,,即,解得.故答案为:.【点睛】本题考查的是三角形的三边关系,熟悉相关性质是解题的关键.三角形中第三边的长大于其他两边之差,小于其他两边之和.2、120【分析】根据三角形的外角性质,可得,即可求解.【详解】解:∵是的外角,∴,∵∠A=50°,∠B=70°,∴.故答案为:120【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.3、2<n<12【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求第三边长的范围.【详解】解:由三角形三边关系定理得:7﹣5<n<7+5,即2<n<12故n的范围是2<n<12.故答案为:2<n<12.【点睛】本题考查的是三角形三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4、160【分析】利用全等三角形的性质解决问题即可.【详解】解:,,在与中,,≌,,故答案为:.【点睛】本题考查全等三角形的应用,解题关键是理解题意,正确寻找全等三角形解决问题.5、55【分析】根据题意首先证明△AOB和△DOC全等,再根据全等三角形对应边相等即可得出答案.【详解】解:,,,即,在和中,,≌,.故答案为:.【点睛】本题主要考查全等三角形的应用以及两点之间的距离,解题的关键是掌握全等三角形对应边相等.6、4【分析】由题意利用全等三角形的判定得出,进而依据全等三角形的性质得出进行分析计算即可.【详解】解:∵ABCD,∴,∵点P为BD中点,∴,∵,,∴,∴,∵CD=7,AE=3,∴.故答案为:4.【点睛】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.7、【分析】根据题意过点B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,则有S△AB'C=AC•B′H即可求得答案.【详解】解:过点B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC•B′H=×4×4=8.故答案为:8.【点睛】本题主要考查三角形全等的判定与性质和旋转的性质以及勾股定理,根据题意利用全等三角形的判定证明△ACB≌△B'HA是解决问题的关键.8、(答案不唯一)【分析】由题意依据全等三角形的判定条件进行分析即可得出答案.【详解】解:∵于点D,于点E,∴,∵,∴当时,≌(AAS).故答案为:.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.9、(答案不唯一)【分析】在与中,已经有条件:所以补充可以利用证明两个三角形全等.【详解】解:在与中,所以补充:故答案为:【点睛】本题考查的是全等三角形的判定,掌握“利用边边边公理证明两个三角形全等”是解本题的关键.10、6【分析】因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,可得△EBC的面积是△ABC面积的一半;利用三角形的等积变换可解答.【详解】解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,∴S△BEF=S△BEC,∵E是AD的中点,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即阴影部分的面积为6cm2.故答案为6.【点睛】本题考查了三角形面积的等积变换:若两个三角形的高(或底)相等,面积之比等于底边(高)之比.三、解答题1、5【分析】由平行线的性质可得,,再由为的中点,得到,即可证明,得到,由此求解即可.【详解】解:∵∴,,又∵为的中点,∴,∴,∴,∴.【点睛】本题主要考查了平行线的性质,全等三角形的性质与判定,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.2、(1)①证明见解析;②经过或秒后,△CMN是直角三角形;(2)∠BEN=60°,证明见解析【分析】(1)①根据题意得出AM=BD,AD=BN,根据等边三角形的性质得到∠A=∠B=∠C=60°,利用SAS定理证明△AMD≌△BDN;②分∠CNM=90°、∠CMN=90°两种情况,根据直角三角形的性质列式计算即可;(2)证明△ABM≌△CAN,根据全等三角形的性质得到∠ABM=∠CAN,根据三角形的外角性质计算,得到答案.【详解】(1)①∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,当点M,N在线段上移动了2s时,AM=6厘米,CN=6厘米,∴BN=BC﹣CN=4厘米,∵AB=10厘米,BD=6厘米,∴AD=4厘米,∴AM=BD,AD=BN,在△AMD和△BDN中,,∴△AMD≌△BDN(SAS);②设经过t秒后,△CMN是直角三角形,由题意得:CM=(10﹣3t)厘米,CN=3t厘米,当∠CNM=90°时,∵∠C=60°,∴∠CMN=30°,∴CM=2CN,即10﹣3t=2×3t,解得:t=,当∠CMN=90°时,CN=2CM,即2(10﹣3t)=3t,解得:t=,综上所述:经过或秒后,△CMN是直角三角形;(2)如图所示,由题意得:AM=CN,在△ABM和△CAN中,,∴△ABM≌△CAN(SAS),∴∠ABM=∠CAN,∴∠BEN=∠ABE+∠BAE=∠CAN+∠BAE=60°.【点睛】本题考查了全等三角形的判断以及列一元一次方程动点相关问题,两边和它们的夹角对应相等的两个三角形全等;一元一次方程与几何图形的相结合的题,多数会涉及到动点的问题,需要对动点的位置进行讨论,讨论时要注意讨论全面,做到不重不漏,通常会按照从左到右或从上到下的方位进行考虑.3、见解析【分析】根据平行线的性质得出∠B=∠E,进而利用SAS证明,利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学英语竞赛试题及答案
- 小学教师招聘考试试题及答案
- 儿童知识竞赛试题及答案简单版
- (正式版)DB2311∕T 060-2023 《质量基础设施“一站式”服务站建设及服务规范》
- 第8课 看谁算得快教学设计小学信息技术(信息科技)第三册上粤教版
- 八年级物理下册 9.6 测滑轮组的机械效率说课稿(附当堂检测题及备课参考资料)(新版)北师大版
- 2024年九年级化学上册 4.1 常见的化学反应-燃烧说课稿 (新版)沪教版
- 聂鑫森《俗世凡人》阅读答案
- 二 北方经济的逐惭恢复说课稿高中历史人民版选修历史上重大改革回眸-人民版2004
- 疫情知识培训题课件
- 从S国税局视角剖析转让定价反避税的实践与启示
- 图像几何变换讲解
- 2025自考行政管理模拟考试试题及答案
- 《胸外心脏按压操作》课件
- 2024-2025学年天津市河西区八年级上学期期中数学试题及答案
- 居家陪护免责合同协议
- 承台大体积砼浇筑方案
- 宣传片管理制度
- 分拣部管理制度
- 食堂不合格食品处置制度
- 驻场人员管理办法及流程
评论
0/150
提交评论