版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省邛崃市中考数学真题分类(勾股定理)汇编单元测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图,由6个相同小正方形组成的网格中,A,B,C均在格点上,则∠ABC的度数为(
)A.45° B.50° C.55° D.60°2、《九章算术》是我国古代数学名著,记载着这样一个问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?”大意是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度与这根芦苇的长度分别是多少?设芦苇的长度为x尺,则可列方程为()A.x2+52=(x+1)2 B.x2+102=(x+1)2C.x2﹣52=(x﹣1)2 D.x2﹣102=(x﹣1)23、如图,中,,将折叠,使点C与的中点D重合,折痕交于点M,交于点N,则线段的长为(
).A. B. C.3 D.4、如图,在中,,cm,cm,点、分别在、边上.现将沿翻折,使点落在点处.连接,则长度的最小值为(
)A.0 B.2 C.4 D.65、两只小鼹鼠在地下打洞,一只朝正北方向挖,每分钟挖8cm,另一只朝正东方向挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距(
)A.50cm B.120cm C.140cm D.100cm6、如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的外壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是(
)A.厘米 B.10厘米 C.厘米 D.8厘米7、如图,正方体盒子的棱长为2,M为BC的中点,则一只蚂蚁从A点沿盒子的表面爬行到M点的最短距离为(
)A. B.C. D.第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、已知,在中,,,,则的面积为__.2、等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是_______cm.3、在平面直角坐标系中,点(3,﹣2)到原点的距离是_____.4、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________________.5、(2011贵州安顺,16,4分)如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.6、如图,折叠直角三角形纸片ABC,使得两个锐角顶点A、C重合,设折痕为DE,若AB=4,BC=3,则△ADC的周长是__________
7、《九章算术》中有“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:有一根竹子原来高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?如图,设折断处距离地面x尺,根据题意,可列方程为______.8、如图,在中,,分别以,,边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当,时,阴影部分的面积为________.三、解答题(7小题,每小题10分,共计70分)1、小明爸爸给小明出了一道题:如图,修公路遇到一座山,于是要修一条隧道.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工,过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量,,米,米.若施工队每天挖100米,求施工队几天能挖完?2、如图,一艘船由A港沿北偏东60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C两港之间的距离(结果保留到0.1km,参考数据:≈1.414,≈1.732);(2)确定C港在A港的什么方向.3、阅读下面材料:小明遇到这样一个问题:∠MBN=30°,点A为射线BM上一点,且AB=4,点C为射线BN上动点,连接AC,以AC为边在AC右侧作等边三角形ACD,连接BD.当AC⊥BN时,求BD的长.小明发现:以AB为边在左侧作等边三角形ABE,连接CE,能得到一对全等的三角形,再利用∠EBC=90°,从而将问题解决(如图1).请回答:(1)在图1中,小明得到的全等三角形是△≌△;BD的长为.(2)动点C在射线BN上运动,当运动到AC时,求BD的长;(3)动点C在射线BN上运动,求△ABD周长最小值.4、在△ABC中,,AB=5cm,AC=3cm,动点P从点B出发,沿射线BC以1cm/s的速度移动,设运动的时间为t秒,当△ABP为直角三角形时,求t的值.5、如图是一个长方形的大门,小强拿着一根竹竿要通过大门.他把竹竿竖放,发现竹竿比大门高1尺;然后他把竹竿斜放,竹竿恰好等于大门的对角线的长.已知大门宽4尺,请求出竹竿的长.6、勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD⊥CD,AE⊥BD于点E,且△ABE≌△BCD.求证:AB2=BE2+AE2.7、如图,在4×4的正方形网格中,每个小正方形的边长均为1.(1)请在所给网格中画一个边长分别为,,的三角形;(2)此三角形的面积是.-参考答案-一、单选题1、A【解析】【分析】连接AC,利用勾股定理分别求出AB、AC、BC,根据勾股定理的逆定理得到△ABC是等腰直角三角形,∠ACB=90°,再根据三角形内角和定理得到答案.【详解】连接AC,∵,,,∴,AC=BC,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=(180°-∠ACB)=45°.故选A.【考点】本题考查了等腰三角形,勾股定理的逆定理,解决问题的关键是作辅助线构建三角形,熟练掌握等腰三角形的定义和性质,熟练运用勾股定理的逆定理判断直角三角形.2、C【解析】【分析】首先设芦苇长x尺,则水深为(x−1)尺,根据勾股定理可得方程(x−1)2+52=x2.【详解】解:设芦苇长x尺,由题意得:(x−1)2+52=x2,即x2﹣52=(x﹣1)2故选:C.【考点】此题主要考查了勾股定理的应用,解题的关键是读懂题意,从题中抽象出勾股定理这一数学模型.3、D【解析】【分析】由折叠的性质可得DN=CN,根据勾股定理可求DN的长,即可得出结果.【详解】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC-CN=6-DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(6-DN)2+4,∴DN=,∴CN=DN=,故选:D.【考点】本题考查了翻折变换、折叠的性质、勾股定理,熟练运用折叠的性质是本题的关键.4、C【解析】【分析】当H落在AB上,点D与B重合时,AH长度的值最小,根据勾股定理得到AB=10cm,由折叠的性质知,BH=BC=6cm,于是得到结论.【详解】解:当H落在AB上,点D与B重合时,AH长度的值最小,∵∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,由折叠的性质知,BH=BC=6cm,∴AH=AB-BH=4cm.故选:C.【考点】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.5、D【解析】【分析】画出图形,利用勾股定理即可求解.【详解】解:如图,cm,cm,∴在中,cm,故选:D【考点】本题考查了勾股定理的应用,理解题意,画出图形是解题的关键.6、B【解析】【分析】把圆柱沿着点A所在母线展开,把圆柱上最短距离转化为将军饮马河型最短问题求解即可.【详解】把圆柱沿着点A所在母线展开,如图所示,作点A的对称点B,连接PB,则PB为所求,根据题意,得PC=8,BC=6,根据勾股定理,得PB=10,故选B.【考点】本题考查了圆柱上的最短问题,利用圆柱展开,把问题转化为将军饮马河问题,灵活使用勾股定理是解题的关键.7、B【解析】【分析】先利用展开图确定最短路线,再利用勾股定理求解即可.【详解】解:如图,蚂蚁沿路线AM爬行时距离最短;∵正方体盒子棱长为2,M为BC的中点,∴,∴,故选:B.【考点】本题考查了蚂蚁爬行的最短路径为题,涉及到了正方形的性质、正方体的展开图、勾股定理、两点之间线段最短等知识,解题关键是牢记相关概念与灵活应用.二、填空题1、2或14#14或2【解析】【分析】过点B作AC边的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是钝角三角形时,②△ABC是锐角三角形时,分别求出AC的长,即可求解.【详解】解:过点作边的高,中,,,,在中,,,①是钝角三角形时,,;②是锐角三角形时,,,故答案为:2或14.【考点】本题考查了勾股定理,三角形面积求法,解题关键是分类讨论思想.2、8【解析】【详解】如图,AD是BC边上的高线.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===(8cm).故答案为8.3、【解析】【分析】根据两点的距离公式计算求解即可.【详解】解:由题意知点(3,﹣2)到原点的距离为故答案为:.【考点】本题考查了用勾股定理求解两点的距离公式.解题的关键在于熟练掌握距离公式:、两点间的距离公式为.4、1.5【解析】【分析】连接DF,由勾股定理求出AB=5,由等腰三角形的性质得出∠CAF=∠DAF,由SAS证明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【详解】连接DF,如图所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.5;∴CF=1.5;故答案为1.5.【考点】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质,证明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解决问题的关键.5、6cm2【解析】【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,设DC=xcm,在Rt△ADC′中根据勾股定理列方程求得x的值,然后根据三角形的面积公式计算即可.【详解】∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD沿BD折叠,使点C落在AB边的C′点,∴△BCD≌△BC′D,∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,∴AC′=AB-BC′=4cm,设DC=xcm,则AD=(8-x)cm,在Rt△ADC′中,AD2=AC′2+C′D2,即(8-x)2=x2+42,解得x=3,∵∠AC′D=90°,∴△ADC′的面积═×AC′×C′D=×4×3=6(cm2).考点:折叠的性质,勾股定理点评:折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等,对应点的连线段被折痕垂直平分.6、【解析】【分析】首先根据勾股定理设,求出AD、CD,再求出AB,相加即可.【详解】解:∵折叠直角三角形纸片,使两个锐角顶点、重合,∴,设,则,故,∵,∴,即,解得,∴.则在中,由勾股定理得∴AC=5∴周长为AD+CD+AB=.故答案为:.【考点】本题考查了勾股定理的应用以及折叠的性质,掌握勾股定理和折叠的性质是解题的关键.7、【解析】【分析】根据勾股定理即可得出结论.【详解】解:设未折断的竹干长为尺,根据题意可列方程为:.故答案为:.【考点】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.8、24【解析】【分析】根据勾股定理得到AC2=AB2-BC2,先求解AC,再根据阴影部分的面积等于直角三角形的面积加上以AC,BC为直径的半圆面积,再减去以AB为直径的半圆面积即可.【详解】解:由勾股定理得,AC2=AB2-BC2=64,则阴影部分的面积,故答案为24.【考点】本题考查的是勾股定理、半圆面积计算,掌握勾股定理和半圆面积公式是解题的关键.三、解答题1、施工队6天能挖完.【解析】【分析】根据题意可得∠BCD=90°,再利用勾股定理得出BC,继而即可求解.【详解】解:∵,∴,∵米,米,∴(米)故(天)答:施工队6天能挖完.【考点】本题考查外角的性质,勾股定理的应用,解题的关键是利用勾股定理求得∠BCD=90°.2、(1)A、C两地之间的距离为14.1km;(2)C港在A港北偏东15°的方向上.【解析】【分析】(1)根据方位角的定义可得出∠ABC=90°,再根据勾股定理可求得AC的长为14.1.(2)由(1)可知△ABC为等腰直角三角形,从而得出∠BAC=45°,求出∠CAM=15°,所而确定C港在A港的什么方向.【详解】(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴AC==≈14.1.答:A、C两地之间的距离为14.1km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏东15°的方向上.【考点】本题考查了方位角的概念及勾股定理及其逆定理,正确理解方位角是解题的关键.3、(1)ABD,ACE,;(2)BD的长为;(3)+4.【解析】【分析】(1)根据SAS可证△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的长度;(2)作AH⊥BC于点H,以AB为边在左侧作等边△ABE,连接CE,求出BH,HC即BC的长度,再利用勾股定理即可求出CE的长度,由(1)知BD=CE,据此得解;(3)作AH⊥BC于点H,以AB为边在左侧作等边△ABE,延长EB至F,使BF=EB,连接AF交BN于C',连接EC',此时BD+AC'有最小值即为AF,此时△ABD周长=AF+AB最小,求出AF即可.(1)解:∵△ACD和△ABE是等边三角形,∴∠EAB=∠DAC=60°,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△ABD和△AEC中,,∴△ABD≌△ACE(SAS),∴BD=CE,∵AB=4,∠MBN=30°,∴AC=2,∴BC=,∴BD=CE=,故答案为:ABD,ACE,;(2)解:如下图,作AH⊥BC于点H,以AB为边在左侧作等边△ABE,连接CE,∵AB=4,∠MAN=30°,∴AH=2,BH=,∵AC=,∴HC=,∴BC=BH+HC=+=,∴CE=,由(1)可知BD=CE,∴此时BD的长为;(3)解:如图,以AB为边在左侧作等边△ABE,延长EB至F,使BF=EB,连接AF交BN于C',连接EC',∵EC'=FC'=BD,∴此时BD+AC'有最小值即为AF,∴此时△ABD周长=AD+BD+AB=AF+AB最小,作AG⊥BE于G,∴AG∥BN,∴∠BAG=30°,∴BG=AB=2,AG=,∴GF=BG+BF=2+4=6,由勾股定理得AF=,∴此时△ABD周长为:+4.【考点】本题主要考查全等三角形的判定和性质,勾股定理等,作出合适的辅助线,构造出全等三角形是解题的关键.4、当△ABP为直角三角形时,t=4或.【解析】【分析】当△ABP为直角三角形时,分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时t的值即可.【详解】在Rt△ABC中,由勾股定理得:,∴BC=4cm,由题意得:BP=tcm.,①当∠APB为直角时,如图①,点P与点C重合,BP=BC=4cm,∴t=4;②当∠BAP为直角时,如图②,B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湛江市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(考试直接用)
- 湖北省农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及参考答案详解1套
- 苏州市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(轻巧夺冠)
- 武威市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(突破训练)
- 资阳市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(巩固)
- 甘孜藏族自治州农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(培优b卷)
- 甘孜藏族自治州农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解
- 2026年中山市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(能力提升)
- 恩施州农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解(有一套)
- 绵阳市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(模拟题)
- 工业高质量数据集研究报告 2025 中国工业互联网研究院
- 2025江苏苏州市姑苏区劳动人事争议仲裁院协理员招聘5人考试参考试题及答案解析
- 全面流程审计管理模板
- 2025学年第一学期高一年级10月六校联考英语试题卷
- 医院法律知识培训课件
- 国家电投广西核电社会招聘笔试题库
- 2025年士兵提干考试题及答案
- 湖南九校联盟2026届高三上学期9月第一次联考化学试题+答案
- 《人工智能导论》课件 第4章 人工智能的行业应用
- 2025年河南淯水新城投资集团有限公司及下属子公司招聘17人考试参考试题及答案解析
- 自主维护课件
评论
0/150
提交评论