综合解析人教版8年级数学上册《轴对称》综合测评练习题(含答案解析)_第1页
综合解析人教版8年级数学上册《轴对称》综合测评练习题(含答案解析)_第2页
综合解析人教版8年级数学上册《轴对称》综合测评练习题(含答案解析)_第3页
综合解析人教版8年级数学上册《轴对称》综合测评练习题(含答案解析)_第4页
综合解析人教版8年级数学上册《轴对称》综合测评练习题(含答案解析)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《轴对称》综合测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=(

)A.50° B.100° C.120° D.130°2、如图,△ABC和△ECD都是等腰直角三角形,△ABC的顶点A在△ECD的斜边DE上.下列结论:①△ACE≌△BCD;②∠DAB=∠ACE;③AE+AC=CD;④△ABD是直角三角形.其中正确的有()A.1个 B.2个 C.3个 D.4个3、如图,在中,,观察图中尺规作图的痕迹,则的度数为(

)A. B. C. D.4、如图,中,∠BCA=90°,∠ABC=22.5°,将沿直线BC折叠,得到点A的对称点A′,连接BA′,过点A作AH⊥BA′于H,AH与BC交于点E.下列结论一定正确的是(

)A.A′C=A′H B.2AC=EB C.AE=EH D.AE=A′H5、等腰三角形两边长为3,6,则第三边的长是(

)A.3 B.6 C. D.3或6第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是__.2、如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是_____.3、如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是__.4、如图,一束光沿方向,先后经过平面镜、反射后,沿方向射出,已知,,则_________.5、如图,在矩形ABCD中,AD=6,AB=4,∠BAD的平分线交BC于点E,则DE=____.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,的顶点,,均在正方形网格的格点上.(1)画出关于x轴的对称图形;(2)将,沿轴方向向左平移3个单位、再沿轴向下平移1个单位后得到,写出,,顶点的坐标.2、请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,B=D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,A=D,画出边BC的垂直平分线n.3、已知,ABC三条边的长分别为.(1)若,当ABC为等腰三角形,求ABC的周长.(2)化简:.4、如图,已知锐角中,.(1)请尺规作图:作的BC边上的高AD;(不写作法,保留作图痕迹)(2)在(1)的条件下,若,,则经过A,C,D三点的圆的半径_____________.5、已知:如图,,相交于点O,,.求证:(1);(2).-参考答案-一、单选题1、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DCA=∠A,根据三角形的外角的性质计算即可.【详解】解:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故选:B.【考点】本题考查的是线段垂直平分线的性质和三角形的外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2、C【解析】【分析】根据等腰直角三角形的性质得到CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,则可根据“SAS”证明△ACE≌△BCD,于是可对①进行判断;利用三角形外角性质得到∠DAB+∠BAC=∠E+∠ACE,加上∠CAB=∠E=45°,则可得对②进行判断;利用CE=CD和三角形三边之间的关系可对③进行判断;根据△ACE≌△BCD得到∠BDC=∠E=45°,则可对④进行判断.【详解】∵△ABC和△ECD都是等腰直角三角形,∴CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,∵∠ACE+∠ACD=∠ACD+∠BCD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),所以①正确;∵∠DAC=∠E+∠ACE,即∠DAB+∠BAC=∠E+∠ACE,而∠CAB=∠E=45°,∴∠DAB=∠ACE,所以②正确;∵AE+AC>CE,CE=CD,∴AE+AC>CD,所以③错误;∵△ACE≌△BCD,∴∠BDC=∠E=45°,∵∠CDE=45°,∴∠ADB=∠ADC+∠BDC=45°+45°=90°,∴△ADB为直角三角形,所以④正确.故选:C.【考点】本题是考查了全等三角形的判定和性质,等腰直角三角形的性质,直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质和等腰直角三角形的性质是解题的关键.3、B【解析】【分析】先由等腰三角形的性质和三角形的内角和定理求出∠BCA,进而求得∠ACD,由作图痕迹可知CE为∠ACD的平分线,利用角平分线定义求解即可.【详解】∵在中,,∴,∴∠ACD=180°-∠ACB=180°-50°=130°,由作图痕迹可知CE为∠ACD的平分线,∴,故选:B.【考点】本题考查了等腰三角形的性质、三角形的内角和定理、角平分线的定义和作法,熟练掌握等腰三角形的性质以及角平分线的尺规作图法是解答的关键.4、B【解析】【分析】证明,即可得出正确答案.【详解】证明:∵∠BCA=90°,∠ABC=22.5°∴,∵沿直线BC折叠,得到点A的对称点A′,连接BA′,∴,∴,∵∠BCA=90°,∴,∵∴,即:,∴,∵AH⊥BA′,∴是等腰直角三角形,∴,,∴,在和中,∵,∴,∴,故选项正确,故选;.【考点】本题考查了折叠、等腰三角形、等腰直角三角形、三角形全等,解决本题的关键是证明全等,得出线段.5、B【解析】【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】由等腰三角形的概念,得第三边的长可能为3或6,当第三边是3时,而3+3=6,所以应舍去;则第三边长为6.故选B.【考点】此题考查等腰三角形的性质和三角形的三边关系解题关键在于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.二、填空题1、15【解析】【分析】根据线段的垂直平分线的性质得到DB=DC,根据三角形的周长公式计算即可.【详解】解:∵DE是BC的垂直平分线,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=15,故答案为15.【考点】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2、3【解析】【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠DAB=∠B,然后根据角平分线的定义与直角三角形两锐角互余求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出BD,然后求解即可.【详解】解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE=1,∵DE是AB的垂直平分线,∴AD=BD,∴∠B=∠DAB,∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B,∵∠C=90°,∴∠CAD+∠DAB+∠B=90°,∴∠B=30°,∴BD=2DE=2,∴BC=BD+CD=1+2=3,故答案为3.【考点】本题考查了角平分线的定义和性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,属于基础题,熟记性质是解题的关键.3、55°【解析】【详解】,,.4、40°##40度【解析】【分析】根据入射角等于反射角,可得,根据三角形内角和定理求得,进而即可求解.【详解】解:依题意,,∵,,,∴,.故答案为:40.【考点】本题考查了轴对称的性质,三角形内角和定理的应用,掌握轴对称的性质是解题的关键.5、2【解析】【分析】由矩形的性质及角平分线的性质解得,,即可证明是等腰直角三角形,从而解得,最后在中利用勾股定理解题即可.【详解】在矩形ABCD中,平分是等腰直角三角形中故答案为:2.【考点】本题考查矩形的性质、等腰直角三角形的判定与性质、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题1、(1)作图见解析;(2)作图见解析A2(﹣3,﹣2),B2(0,﹣3),C2(﹣2,﹣5).【解析】【分析】(1)关于x轴的两点横坐标相同,纵坐标互为相反数,分别画出各点,然后顺次进行连接得出图形;(2)根据平移的法则画出图形,得出各点的坐标.【详解】解:(1)、如图所示:△A1B1C1,即为所求;(2)、如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣2),B2(0,﹣3),C2(﹣2,﹣5)【考点】本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.2、(1)见解析;(2)见解析;【解析】【分析】(1)连接AC,AC所在直线即为对称轴m.(2)延长BA,CD交于一点,连接AC,BC交于一点,连接两点获得垂直平分线n.【详解】解:(1)如图①,直线即为所求(2)如图②,直线即为所求【考点】本题考查了轴对称作图,根据全等关系可以确定点与点的对称关系,从而确定对称轴所在,即可画出直线.3、(1)△ABC的周长为10;(2).【解析】【分析】(1)利用非负数的性质求出a与b的值,即可确定出三角形周长;(2)根据三角形三边满足的条件是,两边和大于第三边,两边的差小于第三边,根据此来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:(1)∵,∴a-2=0,b-4=0,∴a=2,b=4,∵△ABC为等腰三角形,当2为腰时,则三边为2,2,4,而2+2<4,不能组成三角形,舍去;当2为底时,则三边为2,4,4,而2+4>4,能组成三角形,∴△ABC的周长为2+4+4=10;(2)∵△ABC三条边的长分别为a、b、c,∴,,,即,,∴.【考点】本题主要考查了等腰三角形的性质,三角形的三边关系,以及绝对值的计算,第(2)问的关键是先根据三角形三边的关系来判定绝对值内式子的正负.4、(1)见解析(2)【解析】【分析】(1)分别以B、C为圆心,大于BC为半径作弧,两弧交于点E\,连接AE交BC于D,则AD就是△ABC的高;(2)由AD⊥BC可知,AC是经过A,C,D三点的圆的直径,根据垂径定理可知CD=BC=4,由勾股定理可求AC的长,进而可求半径.(1)解:作图如图:(2)解:∵AB=AC,AD⊥BC∴AD是△ABC的中线∴BD=CD=∴AC=∵∠ADC=90°∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论