重难点解析青岛版8年级数学下册期末试题(含答案详解)_第1页
重难点解析青岛版8年级数学下册期末试题(含答案详解)_第2页
重难点解析青岛版8年级数学下册期末试题(含答案详解)_第3页
重难点解析青岛版8年级数学下册期末试题(含答案详解)_第4页
重难点解析青岛版8年级数学下册期末试题(含答案详解)_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青岛版8年级数学下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、若关于的一元一次不等式组的解集恰好有3个负整数解,且关于的分式方程有非负整数解,则符合条件的所有整数的和为(

)A.6 B.9 C. D.22、下列各数中,无理数是()A. B.3.14 C. D.3、下列命题是真命题的是(

)A.对角线相等的平行四边形是菱形.B.有一组邻边相等的平行四边形是菱形.C.对角线相互垂直且相等的四边形是菱形.D.有一组对边平行且相等的四边形是菱形.4、若一个三角形的两边长分别为7和9,则该三角形的周长可能是(

)A.16 B.18 C.24 D.335、一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系.则点C的纵坐标是()A.260 B.280 C.300 D.3206、如图,直线与x轴、y轴交于A、B两点,在y轴上有一点C(0,4),动点M从A点发以每秒1个单位的速度沿x轴向左移动.当动到△COM与△AOB全等时,移的时间t是(

)A.2 B.4 C.2或4 D.2或67、一次函数的图象大致是(

)A. B.C. D.8、如图,已知中,,是的中位线,,,则(

)A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,直线y=﹣x+8与坐标轴分别交于A、B两点,P是AB的中点,则OP的长为_____.2、如图,△ABC是等腰直角三角形,AC=BC,∠ACB=90°,点D是AB中点,在△ABC外取一点E,使DE=AD,连接DE,AE,BE,CE.若CE=-,∠ABE=30°,则AE的长为

_____.3、已知,则x+y=_____.4、如图,创新小组要测量公园内一棵树AB的高度,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为45°,已知测角仪的架高CE=1.2米,则这棵树的高度为______米.5、若“*”表示一种新运算,它的意义是:,例,计算____________.6、已知点A(a,1)与点A'(3,b)关于原点对称,则a+b=_____.7、请写出一个y随x的增大而减小的函数解析式_____.三、解答题(7小题,每小题10分,共计70分)1、计算.2、如图,在△ABC中,∠ACB=90°.(1)在斜边AB上找一点P,使点P到AC的距离等于BP的长.请用无刻度直尺和圆规作出点P(不写画法,保留作图痕迹);(2)若BC=4.5,AB=7.5,则AC的长为_______,(1)中BP的长为_______.3、在平面直角坐标系中,将两块分别含45°和30°的直角三角板按如图放置(∠C=30°,AC=2AB),BC=.(1)点A坐标为____________,点B坐标为______________,点C坐标为________________;(2)平面内存在点D(与点A不重合),使得△DBC与△ABC全等,请你直接写出点D的坐标.4、已知:如图,一次函数的图像分别与x轴、y轴相交于点A、B,且与经过x轴负半轴上的点C的一次函数y=kx+b的图像相交于点D,直线CD与y轴相交于点E,E与B关于x轴对称,OA=3OC.(1)直线CD的函数表达式为______;点D的坐标______;(直接写出结果)(2)点P为线段DE上的一个动点,连接BP.①若直线BP将△ACD的面积分为两部分,试求点P的坐标;②点P是否存在某个位置,将△BPD沿着直线BP翻折,使得点D恰好落在直线AB上方的坐标轴上?若存在,求点P的坐标;若不存在,请说明理由.5、(﹣1)2021.6、小李在某网店选中A、B两款玩偶,确定从该网店进货并销售.两款玩偶的进货价和销售价如表:类别价格A款玩偶B款玩偶进货价(元/个)4030销售价(元/个)5645(1)第一次小李用1100元购进了A、B两款玩偶共30个,求两款玩偶各购进多少个?(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半,小李计划购进两款玩偶60个.设小李购进A款玩偶m个,售完两款玩偶共获得利润W元,问应如何设计进货方案才能获得最大利润?并求W的最大值.7、计算或解方程:(1).(2).-参考答案-一、单选题1、A【解析】【分析】解一元一次不等式组求得解集,根据题意可求得a的取值范围,解分式方程得方程的解,根据分式方程的解为非负整数即可确定所有的a值,从而可求得其和.【详解】解不等式①得:;解不等式②得:由题意知不等式组的解集为:∵恰好有三个负整数解∴解得:解分式方程得:∵分式方程有非负整数解∴a+1是4的非负整数倍∵∴∴a+1=0或4或8即或3或7,即综上:或7,则故选:A【点睛】本题考查了解一元一次不等式组、解分式方程等知识,是方程与不等式的综合,根据不等式组有3个非负整数解,从而得出关于a的不等式是本题的难点与关键.2、D【解析】【分析】根据无理数是无限不循环小数进行逐项判断即可.【详解】解:A、-2是有理数,不符合题意;B、3.14是有理数,不符合题意;C、是有理数,不符合题意;D、是无理数,符合题意,故选:D.【点睛】本题主要考查无理数,解答的关键掌握无理数与有理数的概念:有理数包含整数和分数、无理数为无限不循环小数.3、B【解析】【分析】根据矩形判定,菱形的判定,正方形判定,平行四边形判定进行解答.【详解】解:A、对角线相等的平行四边形是矩形,A错误;B、一组邻边相等的平行四边形是菱形,B正确;C、对角线互相垂直的平行四边形是菱形,C错误;D、有一组对边平行且相等的四边形是平行四边形,D错误;故选B.【点睛】本题考查矩形判定,菱形的判定,平行四边形判定,熟练掌握矩形,菱形正方形平行三角形的定义和判定方法是解题关键.4、C【解析】【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】解:∵三角形的两边长分别为7和9,∴第三条边,∴三角形的周长,即三角形的周长,故选:C.【点睛】本题考查了三角形三条边的关系及等式的性质,熟练掌握运用三角形三边关系是解题关键.5、C【解析】【分析】根据题意和函数图象中的数据,可以求出点C的纵坐标.【详解】解:由题意可得,甲乙两地的距离为150×3=450(千米),∵两车相遇时轿车比货车多行驶了90千米,两车相遇时正好是3小时,∴轿车每小时比货车多行驶30千米,∴轿车的速度为:[450÷3﹣30]÷2+30=90(千米/小时),货车的速度为:[450÷3﹣30]÷5=60(千米/小时),轿车到达乙地用的时间为:450÷90=5(小时),此时两车间的距离为:60×5=300(千米),∴点C的纵坐标是300.故选:C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.6、D【解析】【分析】先求解的坐标,再利用全等三角形的性质求解再结合轴对称的性质可得答案.【详解】解:直线与x轴、y轴交于A、B两点,令则令,则而当时,而如图,当关于轴对称时,此时此时故选:D【点睛】本题考查的是一次函数的性质,全等三角形的判定与性质,熟悉全等三角形的基本图形是解本题的关键.7、C【解析】【分析】根据一次函数的k、b的符号确定其经过的象限即可确定答案.【详解】解:∵一次函数中,<0,∴一次函数的图象经过一、二、四象限.故选C.【点睛】此题主要考查一次函数图象,熟练掌握k、b的符号与图象的位置关系是解题关键.8、C【解析】【分析】在中利用勾股定理即可求出AC的长,再根据三角形中位线的性质,即可求出DE的长.【详解】解:在中,,是的中位线,,故选:C.【点睛】本题考查勾股定理和三角形中位线的性质,掌握三角形的中位线平行于三角形的第三边,并且等于第三边的一半是解题关键.二、填空题1、5【解析】【分析】先求直线与两轴的交点点A(6,0),点B(0,8),然后利用勾股定理求出AB,利用直角三角形斜边中线性质计算即可.【详解】解:∵直线y=﹣x+8与坐标轴分别交于A、B两点,∴令x=0,y=8,令y=0,﹣x+8=0,解得x=6,∴点A(6,0),点B(0,8),∴OA=6,OB=8,在Rt△AOB中,根据勾股定理AB=,∵P是AB的中点,∠AOB=90°,∴OP=,故答案为:5.【点睛】本题考查一次函数与两轴交点问题,勾股定理,直角三角形斜边中线,掌握一次函数与两轴交点问题,勾股定理,直角三角形斜边中线是解题关键.2、2【解析】【分析】过点C作CF⊥CE交BE于F,设AC交BE于J,根据点D是AB中点,DE=AD,可证∠AEB=90°,从而可证△CAE≌△CBF(ASA),即得CE=CF,AE=BF,由∠ECF=90°,得EF=CE=2-2,设AE=BF=x,则BE=x+2-2,在Rt△AEB中,BE=AE,有x+2-2=x,即可解得答案.【详解】解:过点C作CF⊥CE交BE于F,设AC交BE于J,如图:∵点D是AB中点,∴AD=DB,∵DE=AD,∴DE=DA=DB,∴∠DBE=∠DEB,∠DEA=∠DAE,∵∠ABE+∠AEB+∠BAE=180°,∴2∠DEA+2∠DEB=180°,∴∠DEA+∠DEB=90°,∴∠AEB=90°,∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∵∠AEJ=∠BCJ=90°,∠AJE=∠BJC,∴∠CAE=∠CBF,∵CB=CA,∴△CAE≌△CBF(ASA),∴CE=CF,AE=BF,∵∠ECF=90°,∴EF=CE=2-2,设AE=BF=x,则BE=x+2-2,在Rt△AEB中,∵∠ABE=30°,∠AEB=90°,∴AE=AB,由勾股定理得BE=AE,∴x+2-2=x,解得:x=2.故答案为:2.【点睛】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.3、4【解析】【分析】根据绝对值和算术平方根的非负性化简即可得出答案.【详解】解:∵,∴,,∴,,∴.故答案为:4.【点睛】此题考查了绝对值和算术平方根的非负性,正确求出x,y的值是解题的关键.4、11.2【解析】【分析】过点C作CD⊥AB于D,则∠ACD=45°,可证AD=CD,再证四边形CEBD为矩形,得出DB=CE=1.2米,CD=EB=10米即可.【详解】解:过点C作CD⊥AB于D,则∠ACD=45°,∴∠CAD=180°-∠ACD-∠ADC=180°-45°-90°=45°,∴∠ACD=∠CAD=45°,∴AD=CD,∵CE⊥EB,∴∠CEB=90°=∠CDB=∠DBE,∴四边形CEBD为矩形,∴DB=CE=1.2米,CD=EB=10米,∴AD=CD=10米,∴AB=AD+DB=10+1.2=11.2米.故答案为:11.2.【点睛】本题考查等腰直角三角形判定与性质,矩形的判定与性质,线段和差,掌握等腰直角三角形判定与性质,矩形的判定与性质,线段和差是解题关键.5、-13【解析】【分析】根据新定义列式计算即可.【详解】解:∵,∴=-15+2=-13.故答案为:-13.【点睛】本题考查了新定义,以及有理数的四则混合运算,根据新定义列出算式是解答本题的关键.6、﹣4【解析】【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】解:∵点A(a,1)与点A'(3,b)关于原点对称,∴a=-3,b=-1,则a+b=-3-1=-4.故答案为:-4.【点睛】本题主要考查了关于原点对称点的性质,正确记忆横纵坐标符号关系是解题关键.7、答案不唯一,y=-x.【解析】【分析】根据函数的增减性,去选择函数.【详解】根据题意,得y=-x,故答案为:y=-x.【点睛】本题考查了函数的增减性,熟练掌握函数的增减性是解题的关键.三、解答题1、【解析】【分析】按照二次根式的化简方法,零指数法则,绝对值的意义,负指数幂的法则进行化简后即可得到答案.【详解】解:【点睛】本题考查了幂的运算法则、绝对值的化简、二次根式的化简等内容,关键是熟练掌握各种运算的方法.2、(1)见解析(2)6,【解析】【分析】(1)作的平分线交AC于点Q,作线段BQ的垂直平分线交AB于点P,由角平分线及中垂线的性质可得,,得出,根据平行线的判定可得,,得出PQ为点P到AC的距离,且满足条件;(2)由勾股定理可得,过Q作QH⊥AB,垂足为H,根据角平分线的性质可得,依据全等三角形的判定和性质可得,,得出,设,则,利用勾股定理得出,设,则,在中,继续利用勾股定理求解即可得.(1)解:作的平分线交AC于点Q,作线段BQ的垂直平分线交AB于点P,∴,,∴,∴,∴,且,满足条件;(2)解:在中,,过Q作QH⊥AB,垂足为H,∵BQ平分,∴,在与中,,∴,∴,∴,设,则,在中,,即,解得:,∴,设,则,在中,,即,解得:,∴BP的长为,故答案为:6;.【点睛】题目主要考查作角平分线、垂直平分线及其性质,勾股定理,全等三角形的判定和性质等,理解题意,作出图形,综合运用这些知识点是解题关键.3、(1)(2)【解析】【分析】(1)利用勾股定理先求解再利用等腰直角三角形的性质求解可得的坐标,如图,过作于再证明再利用勾股定理可得答案;(2)分三种情况讨论:如图,把沿对折可得:如图,取的中点延长至D,使连接如图,取的中点延长至D,使连接结合中点坐标公式可得答案.(1)解:∠C=30°,AC=2AB,BC=,解得:解得:如图,过作于解得:故答案为:(2)解:如图,把沿对折可得:结合中点坐标可得:如图,取的中点延长至D,使连接由如图,取的中点延长至D,使连接同理可得:综上:D的坐标为【点睛】本题考查的是坐标与图形,勾股定理的应用,全等三角形的判定与性质,中点坐标公式的应用,掌握“全等变换的基本图形”是解本题的关键.4、(1),(-4,-6)(2)①点坐标为或;②存在,点坐标为或【解析】【分析】(1)由求出与的交点坐标,进而得到E,C两点坐标,然后代入,求解的值,进而可得直线CD的函数表达式;D点为直线AB与直线CD的交点,联立方程组求解即可.(2)①分情况求解:情况一,如图1,当P在CD上,设,过B作轴交CD于点M,将代入求解得到点M的坐标,根据,求解的值,进而得到点坐标;情况二,如图2,当P在CE上,设PB与x轴交于G,根据,解得的值,得到点坐标,设直线的解析式为,将B,G点坐标代入求解的值,得直线的解析式,P为直线与直线CD的交点,联立方程组求解即可.②分情况求解:情况一,如图3,当D落在x轴上(记为)时,作DH⊥y轴于点H,BH=OB=3,由翻折可知,,证明,,可得,PB∥x轴,可得P点纵坐标,代入解析式求解即可得点的坐标;情况二,如图4,当D落在y轴上(记为)时,作PM⊥BD,PN⊥OB,由翻折可知:,证明,有PM=PN,由,,,解得的值,将代入中得的值,即可得到点坐标.(1)解:将代入得∴点B的坐标为将代入得,解得∴点A的坐标为∴由题意知点E,C坐标分别为,将E,C两点坐标代入得解得:∴直线CD的函数表达式为;联立方程组解得∴D点坐标为;故答案为:;.(2)①解:分情况求解,情况一,如图1,当P在CD上,设,过B作轴交CD于点M∴将代入中得解得∴点M的坐标为由题意得∴解得∴点坐标为;情况二,如图2,当P在CE上,设PB与x轴交于G由题意知:解得∴点坐标为设直线的解析式为将B,G点坐标代入得解得∴直线的解析式为联立方程组解得∴点P的坐标为;综上所述,点P的坐标为或.②解:分情况求解:情况一,如图3,当D落在x轴上(记为)时,作DH⊥y轴于点H∴BH=OB=3由翻折可得:,∵°在和中∴∴∵∴∴°∴PB∥x轴∴P点纵坐标为将代入中得解得∴点的坐标为;情况二,如图4,当D落在y轴上(记为)时,作PM⊥BD于M,PN⊥OB于N由翻折可得:在和中∴∴PM=PN∵,,∴解得将代入中得解得∴点坐标为;综上所述,存在点,且点坐标为或.【点睛】本题考查了一次函数的解析式,翻折的性质,全等三角形的判定与性质,解二元一次方程组.解题的关键在于对知识的灵活运用.5、【解析】【分析】首先根据,,,,再代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论