综合解析北师大版9年级数学上册期末测试卷(网校专用)附答案详解_第1页
综合解析北师大版9年级数学上册期末测试卷(网校专用)附答案详解_第2页
综合解析北师大版9年级数学上册期末测试卷(网校专用)附答案详解_第3页
综合解析北师大版9年级数学上册期末测试卷(网校专用)附答案详解_第4页
综合解析北师大版9年级数学上册期末测试卷(网校专用)附答案详解_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版9年级数学上册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、在如图所示的网格中,以点为位似中心,四边形的位似图形是(

)A.四边形 B.四边形C.四边形 D.四边形2、在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为(

)A.9人 B.10人 C.11人 D.12人3、如图,在矩形中,,,是矩形的对称中心,点、分别在边、上,连接、,若,则的值为(

)A. B. C. D.4、直线不经过第二象限,则关于的方程实数解的个数是(

).A.0个 B.1个 C.2个 D.1个或2个5、如图,在矩形ABCD中,点F在AD上,点E在BC上,把矩形沿EF折叠后,使点D恰好落

在BC边上的G点处,若矩形面积为且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1 B. C.2 D.6、如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,,图2是点运动时随变化的关系图象,则的长为(

)A. B. C. D.二、多选题(6小题,每小题2分,共计12分)1、已知:线段a、b,且,则下列说法正确的是(

)A.a=2cm,b=3cm B.a=2k,b=3k(k≠0)C.3a=2b D.2、图,在边长为4的正方形ABCD中,点E,F分别是边BC,AB的中点,连接AE,DF交于点N,将沿AE翻折,得到,AG交DF于点M,延长EG交AD的延长线于点H,连接CG,ME,取ME的中点为点O,连接NO,GO.则以下结论正确的有(

)A. B. C. D.3、平行四边形ABCD的对角线相交于点O,分别添加下列条件使得四边形ABCD是矩形的条件有(

)是菱形的条件有(

)A.∠ABC=90° B.AC⊥BD C.AB=BC D.AC平分∠BAD E.AO=DO4、如图,不能判定为菱形的是(

)A. B.C. D.5、如图,△ABC中,P为AB上点,在下列四个条件中能确定△APC和△ACB相似的是(

)A.∠ACP=∠B B.∠APC=∠ACB C.∠CAP=∠BAC D.6、如图,点P在函数(x>0,k>2,k为常数)的图象上,PC⊥x轴交的图象于点A,PD⊥y轴于点D,交,当点P在(x>0,k>2,k为常数)的图象上运动时(

)A.ODB与OCA的面积相等 B.四边形PAOB的面积不会发生变化C.PA与PB始终相等 D.第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、若m,n是关于x的方程x2-3x-3=0的两根,则代数式m2+n2-2mn=_____.2、如图,在平行四边形中,点在边上,,连接交于点,则的面积与四边形的面积之比为___

3、已知、在同一个反比例函数图像上,则________.4、如图,点E为矩形ABCD的边BC长上的一点,作DF⊥AE于点F,且满足DF=AB.下面结论:①△DEF≌△DEC;②S△ABE=S△ADF;③AF=AB;④BE=AF.其中正确的结论是_____.5、已知一元二次方程ax2+bx+c=0(a≠0),下列结论:①若方程两根为-1和2,则2a+c=0;②若b>a+c,则方程有两个不相等的实数根;③若b=2a+3c,则方程有两个不相等的实数根;④若m是方程的一个根,则一定有b2-4ac=(2am+b)2成立.其中结论正确的序号是__________.6、对于任意实数a、b,定义一种运算:,若,则x的值为________.7、如图,点E、F分别是矩形ABCD边BC和CD上的点,把△CEF沿直线EF折叠得到△GEF,再把△BEG沿直线BG折叠,点E的对应点H恰好落在对角线BD上,若此时F、G、H三点在同一条直线上,且线段HF与HD也恰好关于某条直线对称,则的值为______.8、如图,在矩形ABCD中,AB=6,BC=8,点E、F分别是边AB、BC上的动点,且EF=4,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为_______.四、解答题(6小题,每小题10分,共计60分)1、已知,且,求x,y的值.2、如图,BF平行于正方形ADCD的对角线AC,点E在BF上,且AE=AC,CF∥AE,求∠BCF.3、某公司前年缴税40万元,今年缴税48.4万元.该公司缴税的年均增长率为多少?4、如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,连接PE,PB.(1)在AC上找一点P,使△BPE的周长最小(作图说明);(2)求出△BPE周长的最小值.5、如图,平行四边形的对角线、相较于点O,且,,.求证:四边形是矩形.6、发现:四个连续的整数的积加上是一个整数的平方.验证:(1)的结果是哪个数的平方?(2)设四个连续的整数分别为,试证明他们的积加上是一个整数的平方;延伸:(3)有三个连续的整数,前两个整数的平方和等于第三个数的平方,试求出这三个整数分别是多少.-参考答案-一、单选题1、A【解析】【分析】以O为位似中心,作四边形ABCD的位似图形,根据图像可判断出答案.【详解】解:如图所示,四边形的位似图形是四边形.故选:A【考点】此题考查了位似图形的作法,画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,确定位似图形.2、C【解析】【分析】设参加酒会的人数为x人,每人碰杯次数为次,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【考点】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.3、D【解析】【分析】连接AC,BD,过点O作于点,交于点,利用勾股定理求得的长即可解题.【详解】解:如图,连接AC,BD,过点O作于点,交于点,四边形ABCD是矩形,同理可得故选:D.【考点】本题考查中心对称、矩形的性质、勾股定理等知识,学会添加辅助线,构造直角三角形是解题关键.4、D【解析】【分析】根据直线不经过第二象限,得到,再分两种情况判断方程的解的情况.【详解】∵直线不经过第二象限,∴,∵方程,当a=0时,方程为一元一次方程,故有一个解,当a<0时,方程为一元二次方程,∵∆=,∴4-4a>0,∴方程有两个不相等的实数根,故选:D.【考点】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点是a的取值范围,再分类讨论.5、A【解析】【分析】由折叠的性质得,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE,结合∠AFG=60°可得∠GFE=60°,即△GEF为等边三角形,在Rt△GHE中,解直角三角形得到GE=2EC,DC=EC,再由GE=2BG,结合矩形面积为,求出EC,最后根据EF=GE=2EC即可解答.【详解】解:由折叠的性质可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE,∵∠AFG=60°∴∠GFE+∠DFE=180°-∠AFG=120°∴∠GFE=60°∵AF∥GE,∠AFG=60°∴∠FGE=∠AFG=60°∴△GEF为等边三角形∴EF=GE.∵∠FGE=60°,∠FGE+∠HGE=90°∴∠HGE=30°在Rt△GHE中,∠HGE=30°∴GE=2HE=2CE.∴GH==HE=CE∴GE=2BG,∴BC=BG+GE+EC=4EC∵矩形ABCD的面积为4.∴4EC·EC=.∴EC=,∵GE=2HE=2CE.∴EF=GE=1故答案为A.【考点】本题考查了矩形的翻折变换、等边三角形的判定及性质、含30度角的直角三角形的性质、勾股定理等知识,根据边角关系和解直角三角形找出确定BC=4EC,DC=EC是解答本题的关键.6、C【解析】【分析】先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC的值.【详解】解:由图2可知,当P点位于B点时,,即,当P点位于E点时,,即,则,∵,∴,即,∵∴,∵点为的中点,∴,故选:C.【考点】本题考查了学生对函数图象的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题的关键是能正确理解题意,能从图象中提取相关信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思想方法.二、多选题1、BCD【解析】【分析】根据比例的定义和性质,对选项一一分析,即可选出正确答案.【详解】解:A、两条线段的比,没有长度单位,它与所采用的长度单位无关,故选项错误,不符合题意;B、,根据等比性质,a=2k,b=3k(k>0),故选项正确,符合题意;C、⇒3a=2b,故选项正确,符合题意;D、⇒a=b,故选项正确,符合题意.故选:BCD.【考点】本题考查了比例的性质.在比例里,两个外项的乘积等于两个内项的乘积.注意两条线段的比,没有长度单位,它与所采用的长度单位无关.2、ABC【解析】【详解】解:∵四边形ABCD是正方形,∴AD=AB=BC,∠DAB=∠B=90°,∴∠ADF+∠AFD=90°,∵点E、F分别是边BC、AB的中点,∴AF=AB,BE=EC=BC,∴AF=BE,∴△DAF≌△ABE(SAS),∴∠BAE=∠ADF,∴∠BAE+∠AFD=90°,∴∠ANF=180°-(∠BAE+∠AFD)=90°,∴∠AND=90°,故A正确;∵四边形ABCD是正方形,∴AD∥BC,∴∠DAE=∠AEB,由折叠得:∠AEB=∠AEG,∴∠DAE=∠AEG,∴AH=EH,故B正确;由折叠得:∠AEB=∠AEG=(180°-∠GEC),GE=BE=EC,∴∠EGC=∠ECG=(180°-∠GEC),∴.∠AEB=∠GCE,∴AE∥CG,故C正确;∵O为ME中点,∴,,∴+,∵+-,且△AGE≌△DAF,∴+-,∵∠AND=90°=∠ANF,∠FAN=∠MAN,AN=AN,∴△ANF≌△ANM,∴+-,∴,只有M是边DN中点的时,D才成立,故D错误;故选A、B、C.【考点】本题考查正方形和折叠的综合应用,熟练掌握正方形的性质、折叠的性质、三角形全等的判定和性质、三角形内角和定理、平行线的判定等是解题关键.3、AEBCD【解析】【分析】因为四边形ABCD是平行四边形,要成为矩形加上一个角为直角或对角线相等即可;要使其成为菱形,加上一组邻边相等或对角线垂直均可.【详解】A选项:∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形.(有一个角是直角的平行四边形是矩形)B选项:∵AC⊥BD,四边形ABCD是平行四边形,∴四边形ABCD是菱形.(对角线互相垂直的平行四边形是菱形)C选项:∵AB=BC,四边形ABCD是平行四边形,∴四边形ABCD是菱形.(邻边相等的平行四边形是菱形)D选项:如图:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=BC,∴▱ABCD是菱形;E选项:∵AO=DO,四边形ABCD是平行四边形,∴AC=BD,∴四边形ABCD是矩形.(对角线互相平分且相等的平行四边形是矩形)故选:AE,BCD.【考点】考查了菱形和矩形的判定,解题关键是掌握平行四边形的性质和菱形、矩形的判定方法.4、ABC【解析】【分析】根据题意先判断可以判定是菱形的条件即可.【详解】解:根据菱形的判定定理知:当∠DCA=∠BCA,∵四边形为平行四边形,∴∠ADC=∠ABC,AC=AC,∴,∴BC=DC,∴▱ABCD为菱形,故其他三项不能判定,故答案选:ABC.【考点】此题考查菱形的判定定理,熟练掌握定理并应用是关键.5、ABD【解析】【分析】根据有两组角对应相等的两个三角形相似可对A、B、C进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对D进行判断.【详解】解:∵∠ACP=∠B,∠A公共角,∴△APC∽△ACB,故选项A正确,符合题意;∵∠APC=∠ACB,∠A公共角,∴△APC∽△ACB,故选项B正确,符合题意;∵∠CAP=∠BAC,只有一组角相等,∴不能判断△APC和△ACB相似,故选项C错误,不符合题意;∵,∠A是夹角,∴△APC∽△ACB,故选项D正确,符合题意.故答案为:ABD.【考点】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.6、AB【解析】【分析】由反比例函数k的几何意义可判断出各个结论的正误.【详解】解:A.∵点A,B在函数的图象上,∴,故选项A正确;B.∵矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化;故此选项正确.C.PA与PB不一定相等,只有当四边形OCPD是正方形时满足PA=PB,故此选项不正确;D.∵A、B在上,∴S△AOC=S△BOE,∴•OC•AC=•OD•BD,∴OC•AC=OD•BD,∵OC=PD,OD=PC,∴PD•AC=DB•PC,∴.故此选项不正确.故选AB【考点】此题是反比例函数综合题,主要考查了反比例函数(k≠0)中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.三、填空题1、21【解析】【分析】先根据根与系数的关系得到m+n=3,mn=﹣3,再根据完全平方公式变形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整体代入的方法计算.【详解】解:∵m,n是关于x的方程x2-3x-3=0的两根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案为:21.【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2,x1x2.2、【解析】【分析】由DE:EC=3:1,可得DF:FB=3:4,根据在高相等的情况下三角形面积比等于底边的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面积与四边形BCEF的面积的比值.【详解】解:连接BE∵DE:EC=3:1∴设DE=3k,EC=k,则CD=4k∵ABCD是平行四边形∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4∵DE:EC=3:1∴S△BDE:S△BEC=3:1设S△BDE=3a,S△BEC=a则S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴则△DEF的面积与四边形BCEF的面积之比9:19故答案为:.【考点】本题考查了平行线分线段成比例,平行四边形的性质,关键是运用在高相等的情况下三角形面积比等于底边的比求三角形的面积比值.3、【解析】【分析】首先设反比例函数解析式为,然后将两点坐标分别代入,即可得出和的表达式,进而得解.【详解】解:设反比例函数解析式为,将、分别代入,得,∴故答案为.【考点】此题主要考查反比例函数的性质,熟练掌握,即可解题.4、①②④.【解析】【分析】证明Rt△DEF≌Rt△DEC得出①正确;在证明△ABE≌△DFA得出S△ABE=S△ADF;②正确;得出BE=AF,④正确,③不正确;即可得出结论.【详解】解:四边形是矩形,,在和中,,①正确在和中,;②正确,④正确,③不正确故答案为:①②④.【考点】本题考查了矩形的性质、全等三角形的判定与性质等知识,熟练掌握矩形的性质,证明三角形全等是解题的关键.5、①③④【解析】【分析】利用根与系数的关系判断①;由Δ=b2-4ac判断②;由判别式可判断③;将x=m代入方程得am2=-(bm+c),再代入=(2am+b)2变形可判断④.【详解】解:若方程两根为-1和2,则=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正确;由b>a+c不能判断Δ=b2-4ac值的大小情况,故②错误;若b=2a+3c,则Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有两个不相等的实数根,故③正确.若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正确;故答案为:①③④.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系及根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.6、或2【解析】【分析】根据新定义的运算得到,整理并求解一元二次方程即可.【详解】解:根据新定义内容可得:,整理可得,解得,,故答案为:或2.【考点】本题考查新定义运算、解一元二次方程,根据题意理解新定义运算是解题的关键.7、【解析】【分析】根据线段HF与HD也恰好关于某条直线对称,可得HF=HD,由折叠和同角的余角相等得,然后证明,再利用设元法即可解决问题.【详解】解:∵线段HF与HD也恰好关于某条直线对称,∴HF=HD,∴∠HFD=∠FDH,∴∠BHF=2∠HFD由折叠可知:GF=CF,HG=CE=EG,,∠BHG=∠BEG,∠CEF=∠GEF,∵∠BEG+∠CEF+∠GEF=180°,∴2∠HFD+2∠CEF=180°∴∠HFD+∠CEF=90°,又∵∠CFE+∠CEF=90°∴,又∵HF=HD,∴△DHF是等边三角形,∴∠CBD=∠CEF=30°,∴,设GF=CF=x,HF=DF=y,则HG=CE=EG=,HF=HG+GF=GE+CF,即y=x+,∵,∴.【考点】本题主要考查折叠的性质、轴对称的性质、相似三角形的判定与性质.解决本题的关键是掌握翻折的性质.8、38【解析】【分析】根据题目要求,要使四边形AGCD的面积最小,因为的面积固定,只需使的面积最小即可,即的高最小即可,又在中,,则BG=2,高的最小值为点B到AC的距离减去BG的长度,则可求解.【详解】依题意,在中,为EF的中点,,,点G在以B为圆心,2为半径的圆与长方形重合的弧上运动,,要使四边形AGCD的面积最小,则B所在直线垂直线段AC,又,点B到AC的距离为,此时点G到AC的距离为,故的最小面积为,,故答案为:38.【考点】本题考查了动点问题中四边形的最小面积问题,利用勾股定理,直角三角形中线的性质,三角形等积法求高等性质定理进行求解,对于相关性质定理的熟练运用是解题的关键.四、解答题1、x=6,y=10【解析】【分析】设,则x=3k,y=5k,z=6k,由可求得k的值,从而可求得x与y的值.【详解】设,则x=3k,y=5k,z=6k∵∴解得:k=2∴x=3×2=6,y=5×2=10即x、y的值分别为6、10【考点】本题考查了比例的性质,若几个比相等,即,常常设其比值为k,则有a=kb,c=kd,e=kf,再根据题目条件解答则更简便.2、105°【解析】【分析】首先过点A作AO⊥FB的延长线于点O,连接BD,交AC于点Q,易得四边形AOBQ是正方形,四边形ACFE是菱形,Rt△AOE中,AE=2AO,即可求得∠AEO=30°,继而求得答案.【详解】作AO⊥FB的延长线,BQ⊥AC∵BF∥AC,∴AO∥BQ且∠QAB=∠QBA=45°∴AO=BQ=AQ=AC∵AE=AC

∴AO=AE∴∠AEO=30°∵BF∥AC

∴∠CAE∠AEO=30°∵BF∥AC,CF∥AE

∴∠CFE∠CAE=30°∵BF∥AC

∴∠CBF∠BCA=45°∠BCF=180°-∠CBF-∠CFE=180°-45°-30°=105°【考点】本题考了正方形的性质、平行四边形的判定与性质以及含30°的直角三角形的性质,解题关键是注意掌握辅助线的作法,注意掌握数形结合思想的应用.3、10%【解析】【分析】设公司缴税的年平均增长率为x,根据增长后的纳税额=增长前的纳税额×(1+增长率),即可得到去年的纳税额是40(1+x)万元,今年的纳税额是40(1+x)2万元,据此即可列出方程求解.【详解】解:设该公司缴税的年平均增长率为x,依题意得40(1+x)2=48.4解方程得x1=0.1=10%,x2=−2.1(舍去)所以该公司缴税的年平均增长率为10%.【考点】本题运用增长率(下降率)的模型解题.读懂题意,找到等量关系准确的列出式子是解题的关键.4、(1)见解析(2)12【解析】【分析】(1)连接DE,交AC于点P′,连接BP′,当点P在点P′处时,△BPE的周长最小.理由:证明△ABP′≌△ADP′,即可求解;(2)根据(1)可得P′B+P′E=DE.再由AE=3BE,可得AE=6.从而得到AD=AB=8.再由勾股定理,即可求解.(1)解:如图,连接DE,交AC于点P′,连接BP′,当点P在点P′处时,△BPE的周长最小.理由:在正方形ABCD中,AB=AD,∠BA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论