




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《全等三角形》章节练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在△ABC和△A′B′C中,△ABC≌△A′B′C,AA′∥BC,,,则,满足关系(
)A. B. C. D.2、如图,已知,下面甲、乙、丙、丁四个三角形中,与全等的是(
)A.甲 B.乙 C.丙 D.丁3、如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:54、如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15° B.55° C.65° D.75°5、如图,在中,点D是BC边上一点,已知,,CE平分交AB于点E,连接DE,则的度数为(
)A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在中,,AD是的角平分线,过点D作,若,则______.2、我们定义:一个三角形最小内角的角平分线将这个三角形分割得到的两个三角形它们的面积之比称为“最小角割比Ω”(),那么三边长分别为7,24,25的三角形的最小角割比Ω是______.3、如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为______时,△ABP与△PCQ全等.4、如图,若△ABC≌△ADE,且∠1=35°,则∠2=_____.5、如图,在x、y轴上分别截取OA、OB,使OA=OB,再分别以点A、B为圆心,以大于AB的长度为半径画弧,两弧交于点C.若C的坐标为(3a,﹣a+8),则a=_____.三、解答题(5小题,每小题10分,共计50分)1、在中,,点D是直线BC上一点(点D不与点B,C重合),以AD为一边在AD的右侧作,使,,连接CE.(1)如图(1),若点D在线段BC上,和之间有怎样的数量关系?(不必说明理由)(2)若,当点D在射线BC上移动时,如图(2),和之间有怎样的数量关系?说明理由.2、如图,点A,F,E,D在一条直线上,AF=DE,CF∥BE,AB∥CD.求证BE=CF.3、【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图,延长AD到点E,使DE=AD,连结BE.请根据小明的方法思考:(1)由已知和作图能得到的理由是(
).A.SSS
B.SAS
C.AAS
D.ASA(2)AD的取值范围是(
).A.
B.
C.
D.(3)【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】如图,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.4、如图,在中,且,点是斜边的中点,E、F分别是AB、AC边上的点,且.连接.(1)求证:;(2)如图,若,,则的面积为________.5、如图,点B、C、D在同一直线上,△ABC、△ADE是等边三角形,CE=5,CD=2(1)证明:△ABD≌△ACE;(2)求∠ECD的度数;(3)求AC的长.-参考答案-一、单选题1、C【解析】【分析】根据△△,证得,=,再利用∥BC得到=,再根据三角形内角和定理即可得到结论.【详解】∵△△,∴,∠ACB=,∴,=,∵∥BC,∴=,∴,故选:C.【考点】此题考查旋转图形的性质,等腰三角形的性质,两直线平行内错角相等,三角形的内角和定理.2、B【解析】【分析】根据全等三角形的判定定理逐判定即可.【详解】解:A.△ABC和甲所示三角形只有一边一角对应相等,无法判定它们全等,故本选项不符合题意;B.△ABC和乙所示三角形有两边及其夹角对应相等,根据SAS可判定它们全等,故本选项符合题意;C.△ABC和丙所示三角形有两边一角相等,但不是对应的两边一角,无法判定它们全等,故本选项不符合题意;;D.△ABC和丁所示三角形有两角对应相等,有一边相等,但相等边不是两角的夹边,所以两角一边不是对应相等,无法判定它们全等,故本选项不符合题意;;故选:B.3、C【解析】【分析】过点作于点,作于点,作于点,先根据角平分线的性质可得,再根据三角形的面积公式即可得.【详解】解:如图,过点作于点,作于点,作于点,是的三条角平分线,,,故选:C.【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键.4、D【解析】【分析】根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故选D.【考点】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.5、B【解析】【分析】过点E作于M,于N,于H,如图,先计算出,则AE平分,根据角平分线的性质得,再由CE平分得到,则,于是根据角平分线定理的逆定理可判断DE平分,再根据三角形外角性质解答即可.【详解】解:过点E作于M,于N,于H,如图,∵,,∴,∴平分,∴,∵平分,∴,∴,∴平分,∴,∵由三角形外角可得:,,∴,而,∴.故选:B.【考点】本题考查了角平分线的性质和判定定理,三角形的外角性质定理,解决本题的关键是运用角平分线定理的逆定理证明DE平分.二、填空题1、7【解析】【分析】先利用角平分线性质证明CD=DE,再求出的值即可.【详解】解:∵AD平分∠BAC交BC于点D,,DE⊥AB,∴CD=ED.∵,∴BD+CD=7,∴,故答案为:7.【考点】本题主要考查了角平分线的性质,解题的关键是熟练掌握角平分线的性质.2、.【解析】【分析】根据题意作出图形,然后根据角平分线的性质得到,再根据三角形的面积和最小角割比Ω的定义计算即可.【详解】解:如图示,,,,则,根据题意,作的角平分线交于点,过点,作交于点,过点,作交于点,则∵,,则()故答案是:.【考点】本题考查了三角形角平分线的性质和三角形的面积计算,熟悉相关性质是解题的关键.3、2或【解析】【详解】可分两种情况:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分别计算出t的值,进而得到v的值.【解答】解:①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=8cm,∴PC=8cm,∴BP=12﹣8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,解得:v=,综上所述,当v=2或时,△ABP与△PQC全等,故答案为:2或.【考点】此题考查了动点问题,全等三角形的性质的应用,解一元一次方程,正确理解全等三角形的性质得到相等的对应边求出t是解题的关键.4、35°.【解析】【分析】根据全等的性质可得:∠EAD=∠CAB,再根据等式的基本性质可得∠1=∠2=35°.【详解】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,∴∠EAD-∠CAD=∠CAB-∠CAD,∴∠2=∠1=35°.故答案为35°.【考点】此题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解决此题的关键.5、2【解析】【分析】根据尺规作图可知,点C在∠AOB角平分线上,所以C点的横坐标和纵坐标相等,即可以求出a的值.【详解】解:根据题目尺规作图可知,交点C是∠AOB角平分线上的一点,∵点C在第一象限,∴点C的横坐标和纵坐标都是正数且横坐标等于纵坐标,即3a=-a+8,得a=2,故答案为:2.【考点】本题考查了角平分线尺规作图,角平分线的性质,以及平面直角坐标系的知识,结合直角坐标系的知识列方程求解是解答本题的关键.三、解答题1、(1);(2),理由见解析【解析】【分析】(1)根据题意证明,根据三角形的内角和即可求解;(2)设AD与CE交于F点,根据题意证明,根据平角的性质即可求解.【详解】(1).理由如下:,.,,,,∴=∵∴;(2).理由如下:设AD与CE交于F点.,.,,,.,.,,.【考点】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.2、证明见解析.【解析】【分析】根据线段的和差关系可得AE=DF,根据平行线的性质可得∠D=∠A,∠CFD=∠BEA,利用ASA可证明△ABE≌△DCF,根据全等三角形的性质即可得结论.【详解】∵AF=DE,∴AF+EF=DE+EF,即AE=DF,∵AB//CD,∴∠D=∠A,∵CF//BE,∴∠CFD=∠BEA,在△ABE≌△DCF中,,∴△ABE≌△DCF,∴BE=CF.【考点】本题考查平行线的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键.3、(1)B(2)C(3)见解析【解析】【分析】(1)根据AD=DE,∠ADC=∠BDE,BD=DC推出△ADC和△EDB全等即可;(2)根据全等得出BE=AC=6,AE=2AD,由三角形三边关系定理得出8-6<2AD<8+6,求出即可;(3)延长AD到M,使AD=DM,连接BM,根据SAS证△ADC≌△MDB,推出BM=AC,∠CAD=∠M,根据AE=EF,推出∠CAD=∠AFE=∠BFD,求出∠BFD=∠M,根据等腰三角形的性质求出即可.(1)∵在△ADC和△EDB中,∴△ADC≌△EDB(SAS),故选B;(2)∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三边关系定理得:8-6<2AD<8+6,∴1<AD<7,故选:C.(3)延长AD到点M,使AD=DM,连接BM.∵AD是△ABC中线∴CD=BD∵在△ADC和△MDB中∴∴BM=AC(全等三角形的对应边相等)∠CAD=∠M(全等三角形的对应角相等)∵AE=EF,∴∠CAD=∠AFE(等边对等角)∵∠AFE=∠BFD,∴∠BFD=∠M,∴BF=BM(等角对等边)又∵BM=AC,∴AC=BF.【考点】本题考查了三角形的中线,三角形的三边关系定理,等腰三角形性质和判定,全等三角形的性质和判定等知识点,主要考查学生运用定理进行推理的能力.4、(1)见解析;(2).【解析】【分析】(1)易证∠ADE=∠CDF,即可证明△ADE≌△CDF;(2)由(1)可得AE=CF,BE=AF,,再根据△DEF的面积=,即可解题.【详解】(1)证明:∵AB=AC,D是BC中点,∴∠BAD=∠C=45°,AD=BD=CD,∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,∴△ADE≌△CDF(ASA).(2)解:∵△ADE≌△CDF∴AE=CF=5,BE=AF=12,AB=AC=17,∴∴∴△DEF的面积=.【考点】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ADE≌△CDF是解题的关键.5、(1)见解析(2)60°(3)3【解析】【分析】(1)根据等边三角形的性质利用SAS证明;(2)利用全等三角形的性质得到∠B=∠ACE=60°,计算即可得到答案;(3)利用全等的性质得到BD的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深潜救援服项目可行性研究报告
- 铝合金高性能型材生产工程项目可行性研究报告
- 环保型农药乳化剂项目可行性研究报告
- 防汛知识培训会简报
- DB65T 4083.2-2017 双语教育资源库 第2部分:资源分类和技术要求
- 防暴徒培训基础知识课件
- 防控知识岗前培训课件
- 防控人员知识培训课件
- 防恐防暴知识培训总结课件
- 2025年高考政治总复习阶段测试卷及答案(共四套)
- 【川教版】《生命 生态 安全》二年级上册第3课 我的鸡蛋宝宝 课件
- 数控机床概述
- 五年级美术 《感受漫画造型》 公开课比赛一等奖
- 眼科手术器械的清洁与消毒
- 管理学基础(第3版)全套教学课件
- 大润发供应商系统
- 红帽认证管理员RHCSA(习题卷1)
- 2021地质灾害治理工程施工质量验收规范
- 婚恋工作室交友计划书
- 经典安徒生童话故事100篇
- 冰箱温度监测登记表
评论
0/150
提交评论