




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
冀教版9年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图是正方体的展开图,则与“脱”字所在面相对的面上标的字是()A.取 B.得 C.胜 D.利2、已知二次函数,当时,x的取值范围是,且该二次函数图象经过点,则p的值不可能是()A.-2 B.-1 C.4 D.73、抛物线y=4(2x﹣3)2+3的顶点坐标是()A.(,3) B.(4,3) C.(3,3) D.(﹣3,3)4、二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,已知图像经过点(﹣1,0),其对称轴为直线x=1.下列结论:①abc<0;②b2﹣4ac<0;③8a+c<0;④若抛物线经过点(﹣3,n),则关于x的一元二次方程ax2+bx+c﹣n=0(a≠0)的两根分别为﹣3,5.上述结论中正确个数有()A.1个 B.2个 C.3个 D.4个5、如图,已知的内接正六边形的边心距是,则阴影部分的面积是().A. B. C. D.6、如图,抛物线y=ax2+bx+c的顶点为P(﹣2,2),且与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),此时抛物线与y轴交于点A′,则AA′的长度为()A.2 B.3 C.3 D.D37、在ABC中,∠B=45°,AB=6;①AC=4;②AC=8;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC的长唯一.可以选取的是()A.① B.② C.③ D.①或③8、如图,在矩形ABCD中,,,动点P沿折线运动到点B,同时动点Q沿折线运动到点C,点P,Q在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,的面积为S,则下列图象能大致反映S与t之间函数关系的是()A. B.C. D.9、一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其他都相同,搅匀后任意摸出一个球,是红球的概率是()A. B. C. D.10、如图,二次函数的图象经过点,其对称轴为直线,有下列结论:①;②;③;④;⑤若,是抛物线上两点,且,则实数的取值范围是.其中正确结论是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、若⊙O的半径为3cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是:点A在⊙O_______.(填“上”、“内”、“外”)2、已知正六边形的半径为2,则该正六边形的面积为______°.3、有4张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图).将这4张纸牌背面朝上洗匀后先由小明从中任意摸出一张,放回洗匀后再由小敏从中任意摸出一张,则“小明所摸纸牌是中心对称图形,小敏所摸纸牌是轴对称图形”的概率为__.4、学习“展开与折叠”后,小明在家用剪刀剪开一个如图所示的长方体纸盒,得到其展开图.若此长方体纸盒的长,宽,高分别是a,b,c(单位:cm,),则其小明剪得展开图的周长最大为______cm(用含a,b,c的式子表示).5、如图,已知点A是抛物线图像上一点,将点A向下平移2个单位到点B,再把A绕点B顺时针旋转120°得到点C,如果点C也在该抛物线上,那么点A的坐标是______.6、一个布袋里装有2个红球,2个黄球,它们除颜色不同外其余都相同.现从布袋里摸出一个球,记下颜色后不放回,再摸出一个球,两个球恰好“一红一黄”的概率是_______.7、已知二次函数的图象经过点,那么a的值为_____.8、当k-2≤x≤k时,函数y=x2-4x+4(k为常数)的最小值为4,则k的值是____.9、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同,小刚通过多次摸球试验后发现其中摸到红色,黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是_____个.10、如图,在平面直角坐标系中,,,且AC在x轴上,O为AC的中点.若抛物线与线段AB有两个不同的交点,则a的取值范围是______.三、解答题(6小题,每小题10分,共计60分)1、如图,已知抛物线与轴交于、两点,与轴交于点.(1)求抛物线的解析式;(2)点是第一象限内抛物线上的一个动点(与点、不重合),过点作轴于点,交于点,过点作,垂足为.求线段的最大值;(3)已知为抛物线对称轴上一动点,若是直角三角形,求出点的坐标.2、已知二次函数的图像经过点,,.(1)求二次函数的表达式;(2)若二次函数的图像与轴交于、两点,与轴交于点,其顶点为,则以,,,为顶点的四边形的面积为__________;(3)将二次函数的图像向左平移个单位后恰好经过坐标原点,则的值为__________.3、如图,AB为的切线,B为切点,过点B作,垂足为点E,交于点C,连接CO,并延长CO与AB的延长线交于点D,与交于点F,连接AC.(1)求证:AC为的切线:(2)若半径为2,.求阴影部分的面积.4、如图,点在轴正半轴上,,点是第一象限内的一点,以为直径的圆交轴于,两点,,两点的横坐标是方程的两个根,,连接.(1)如图(1),连接.①求的正切值;②求点的坐标.(2)如图(2),若点是的中点,作于点,连接,,,求证:.5、(1)回归教材:北师大七年级下册P44,如图1所示,点P是直线m外一点,,点O是垂足,点A、B、C在直线m上,比较线段PO,PA,PB,PC的长短,你发现了什么?最短线段是______,于是,小明这样总结:直线外一点与直线上各点连接的所有线段中,______.(2)小试牛刀:如图2所示,中,,,.则点P为AB边上一动点,则CP的最小值为______.(3)尝试应用:如图3所示是边长为4的等边三角形,其中点P为高AD上的一个动点,连接BP,将BP绕点B顺时针旋转60°得到BE,连接PE、DE、CE.①请直接写出DE的最小值.②在①的条件下求的面积.(4)拓展提高:如图4,顶点F在矩形ABCD的对角线AC上运动,连接AE..,,请求出AE的最小值.6、如图,四边形ACBD内接于⊙O,AB是⊙O的直径,CD平分∠ACB交AB于点E,点P在AB延长线上,.(1)求证:PC是⊙O的切线;(2)求证:;(3)若,△ACD的面积为12,求PB的长.-参考答案-一、单选题1、C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“脱”与“胜”是相对面,“贫”与“得”是相对面,“取”与“利”是相对面.故选:C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2、C【解析】【分析】根据题意求得抛物线的对称轴,进而求得时,的取值范围,根据的纵坐标小于0,即可判断的范围,进而求解【详解】解:∵二次函数,当时,x的取值范围是,∴,二次函数开口向下解得,对称轴为当时,,经过原点,根据函数图象可知,当,,根据对称性可得时,二次函数图象经过点,或不可能是4故选C【点睛】本题考查了抛物线与一元一次不等式问题,求得抛物线的对称轴是解题的关键.3、A【解析】【分析】根据顶点式的顶点坐标为求解即可【详解】解:抛物线的顶点坐标是故选A【点睛】本题考查了二次函数顶点式的顶点坐标为,掌握顶点式求顶点坐标是解题的关键.4、C【解析】【分析】根据图象可判断abc的符号,可判断结论①,由图象与x轴的交点个数可判断②,由对称轴及x=−2时的函数值即可判断③,由x=−3和对称轴即可判断④.【详解】解:∵图象开口向下,∴a<0,∵对称轴为直线x=1,∴−=1,∴b=−2a>0,∵图象与y轴的交点在x轴的上方,∴c>0,∴abc<0,∴①说法正确,由图象可知抛物线与x轴有两个交点,∴b2−4ac>0,∴②错误,由图象可知,当x=−2时,y<0,∴4a−2b+c=4a−2(−2a)+c=8a+c<0,∴③正确,由题意可知x=−3是ax2+bx+c−n=0(a≠0)的一个根,∵对称轴是x=1,∴另一个根为x=5,∴④正确,∴正确的有①③④,故选:C.【点睛】本题主要考查二次函数的图象与性质,关键是要牢记图象与各系数之间的关系.5、D【解析】【分析】连接正六边形的相邻的两个顶点与圆心,构造扇形和等边三角形,则可得到弓形的面积,阴影部分的面积等于弓形的6倍.【详解】解:连接、,,的内接正六边形,,∴△DOE是等边三角形,∴∠DOM=30°,设,则,解得:,,根据图可得:,,.故选:D.【点睛】本题考查了正多边形与圆及扇形的面积的计算,解题的关键是知道阴影部分的面积等于三个弓形的面积.6、B【解析】【分析】先运用待定系数法求出原抛物线的解析式,再根据平移不改变二次项系数,得出平移后的抛物线解析式,求出A′的坐标,进而得出AA′的长度.【详解】∵抛物线y=ax2+bx+c的顶点为P(﹣2,2),∴y=a(x+2)2+2,∵与y轴交于点A(0,3),∴3=a(0+2)2+2,解得a=∴原抛物线的解析式为:y=(x+2)2+2,∵平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),∴平移后的抛物线为y=(x﹣1)2﹣1,∴当x=0时,y=,∴A′的坐标为(0,),∴AA′的长度为:3﹣()=3.故选:B.【点睛】本题考查了平移、二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.7、B【解析】【分析】作AD⊥BC于D,求出AD的长,根据直线和圆的位置关系判断即可.【详解】解:作AD⊥BC于D,∵∠B=45°,AB=6;∴,设三角形ABC1的外接圆为O,连接OA、OC1,∵∠B=45°,∴∠O=90°,∵外接圆半径为4,∴;∵∴以点A为圆心,AC为半径画圆,如图所示,当AC=4时,圆A与射线BD没有交点;当AC=8时,圆A与射线BD只有一个交点;当AC=时,圆A与射线BD有两个交点;故选:B.【点睛】本题考查了直角三角形的性质和射线与圆的交点,解题关键是求出AC长和点A到BC的距离.8、D【解析】【分析】分别求出点P在AD,BD上,利用三角形面积公式构建关系式,可得结论.【详解】解:∵四边形ABCD是矩形,∴AD=BC=4,∠A=∠C=90°,AD∥BC,∴∠ADB=∠DBC=60°,∴∠ABD=∠CDB=30°,∴BD=2AD=8,当点P在AD上时,PE⊥BQS△PBQ=·BQ·PE=•(8-2t)•(4-t)•sin60°=(4-t)2(0<t<4),当点P在线段BD上时,QE’⊥BPS△PBQ=·BP·QE’=[12-2(t-4)]•(t-)sin60°=-t2+t-16(4<t≤8),观察图象可知,选项D满足条件,故选:D.【点睛】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.9、A【解析】【分析】根据概率公式计算即可.【详解】解:布袋中共有球2+3+5=10个,∴P(任意摸出一个是红球)=,故选:A.【点睛】此题考查了求事件的概率,熟记概率的计算公式是解题的关键.10、C【解析】【分析】根据开口方向,对称轴,以及与轴负半轴的交点位置判断的符号即可判断①,根据二次函数图象的对称性可知时的函数值与的函数值相等,进而可得,即可判断②,根据对称轴为以及顶点坐标公式即可判断③,根据二次函数图象与轴有两个交点,则,即可判断④,根据对称性可得时的函数值与时的函数值相等,进而根据抛物线的开口方向以及,即可判断,根据顶点位置的函数值最小,进而即可判断⑤【详解】解:∵抛物线的开口朝上,则,对称轴,可得,根据抛物线与轴交于负半轴,则∴故①正确;∵二次函数的图象经过点,则当时,对称轴为直线,则时的函数值与的函数值相等,时,即故②不正确对称轴为直线,∴,即故③正确;∵二次函数图象与轴有两个交点,则即故④错误;对称轴为直线,则时的函数值与的函数值相等,,是抛物线上两点,且,抛物线开口向上,故⑤正确故正确的是①③⑤故选C【点睛】本题考查了二次函数图象的性质以及与各系数之间的关系,二次函数与一元一次不等式,根据图象判断方程的根的情况,二次函数的对称性,掌握二次根式图象的性质是解题的关键.二、填空题1、外【解析】【分析】点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.据此作答.【详解】解:∵⊙O的半径为3cm,点A到圆心O的距离OA为4cm,即点A到圆心的距离大于圆的半径,∴点A在⊙O外.故答案为:外.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.2、【解析】【分析】正六边形的面积由6个全等的边长为2的等边三角形面积组成,计算一个等边三角形的面积,乘以6即可.【详解】解:设O是正六边形的中心,AB是正六边形的一边,OC是边心距,则△OAB是正三角形.∴OA=AB=2,∴AC=AB=1,∴,∴S△OAB=AB•OC=×2×=,则正六边形的面积为6×=6.故答案为:6.【点睛】本题考查了正多边形的面积,等边三角形的性质,熟练把多边形的面积转化为三角形面积的倍数计算是解题的关键.3、##0.375【解析】【分析】列举出所有情况,看小明所摸纸牌是中心对称图形,小敏所摸纸牌是轴对称图形的情况数占总情况数的多少即可.【详解】解:画树状图如下:共有16种情况,小明所摸纸牌是中心对称图形,小敏所摸纸牌是轴对称图形的情况有6种,所以概率为.故答案为.【点睛】考查列树状图解决概率问题;找到小明所摸纸牌是中心对称图形,小敏所摸纸牌是轴对称图形的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.4、【解析】【分析】根据边长最长的都剪,边长最短的剪的最少,可得答案.【详解】解:如图:,这个平面图形的最大周长是8a+4b+2c(cm).故答案为:(8a+4b+2c).【点睛】此题主要考查了长方体的展开图的性质,正确的画出图形解决题的关键.5、(,)【解析】【分析】设A(x,x2),根据平移、旋转的性质求出C点坐标,代入抛物线求出x,故可求解.【详解】解:∵点A是抛物线图像上一点故设A(x,x2),∵将点A向下平移2个单位到点B,故B(x,x2-2)∵把A绕点B顺时针旋转120°得到点C,如图,过点B作BD⊥AB于B,过点C作CD⊥BD于D,AB=BC=2,∠ABC=120°,∠ABD=90°,∴∠DBC=30°故CD=,BD=,故C(x+,x2-3),把C(x+,x2-3)代入,∴x2-3=(x+)2,解得x=-∴A(-,3)故答案为:(,3).【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知坐标与函数的关系、平移与旋转的特点及直角三角形的性质.6、【解析】【分析】根据题意先画出树形图得到所有可能结果,即可求出两次摸出的球恰好颜色不同的概率.【详解】根据题意画图如下:∵共有12种情况,两次摸出的球恰好“一红一黄”有8种情况,∴两次摸出的球恰好颜色相同的概率是:;故答案为:【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题的关键是要注意此题是放回还是不放回.用到的知识点为:概率=所求情况数与总情况数之比.7、【解析】【分析】把已知点的坐标代入抛物线解析式可得到的值.【详解】解:二次函数的图象经过点,,解得:.故答案为:.【点睛】本题考查了待定系数法求二次函数解析式,解题的关键是掌握二次函数图象上点的坐标满足其解析式.8、0或6##6或0【解析】【分析】先求出函数的顶点坐标,再根据题意分情况讨论即可求解.【详解】∵y=x2-4x+4=(x-2)2∴顶点坐标为(2,0)∴当k≤2时,x=k时,函数y=x2-4x+4的最小值为4故k2-4k+4=4解得k=0或k=4(舍去)当k-2≥2时,x=k-2时,函数y=x2-4x+4的最小值为4故(k-2)2-4(k-2)+4=4解得k=6或k=2(舍去)故答案为6或0.【点睛】此题主要考查二次函数的图象与性质,解题的关键是根据题意分情况讨论.9、24【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,先求得白球的频率,再乘以总球数求解.【详解】解:小刚通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在和,口袋中白色球的个数很可能是个.故答案为:24.【点睛】本题考查了利用用频率估计概率,解题的关键是要计算出口袋中白色球所占的比例,再计算其个数.10、3≤a<4或a≤-5【解析】【分析】先确定A,B的坐标,确定直线AB的解析式,联立两个函数解析式构造一元二次方程,其判别式大于零,分a<0和a>0,两种情形计算即可.【详解】∵,,且AC在x轴上,O为AC的中点,∴A(-1,0),B(1,2),∠BAC=45°,∴直线AB与y轴的交点为(0,1),设直线AB的解析式为y=kx+1,∴-k+1=0,解得k=1,∴直线AB的解析式为y=x+1,∵抛物线与线段AB有两个不同的交点,∴x+1=有两个不相等实数根,∴有两个不相等实数根,∴,解得a<4;当a>0时,,∴a≥3,∴3≤a<4,当a<0时,,∴a≤-5,∴3≤a<4或a≤-5,故答案为:3≤a<4或a≤-5.【点睛】本题考查了待定系数法确定一次函数的解析式,一元二次方程根的判别式,抛物线与一次函数的综合,不等式组的解法,熟练根的判别式和不等式组的解法是解题的关键.三、解答题1、(1)(2)当时,有最大值,最大值是(3)点的坐标为,,,【解析】【分析】(1)由抛物线与x轴交于A(﹣1,0)、B(3,0)两点,设抛物线为y=a(x+1)(x﹣3),将C(0,3)代入即可得y=﹣x2+2x+3;(2)由B(3,0),C(0,3),可推得△DEM是等腰直角三角形,DM=DE,设直线BC为y=kx+b,用待定系数法可得直线BC为y=﹣x+3,设D(m,﹣m2+2m+3),则E(m,﹣m+3),即得DE=﹣m2+3m,由二次函数性质可得线段DM的最大值;(3)设P(1,t),可得PB2=(1﹣3)2+t2=4+t2,PC2=(1﹣0)2+(t﹣3)2=1+(t﹣3)2,BC2=18,分三种情况:①PC为斜边时,②PB为斜边时,③BC为斜边时,列出方程求解即可.(1)解:∵抛物线与轴交于、两点,∴设抛物线解析式为,将点坐标代入,得:,解得:,抛物线解析式为;(2)解:设直线的函数解析式为,∵直线过点,,∴,解得,∴,设,,∴,∵,,∴,∴,∵轴,∴,∴,又∵,在中,∴,∵,∴当时,有最大值,最大值是;(3)解:抛物线的对称轴为直线,设P(1,t),而B(3,0),C(0,3),∴PB2=(1﹣3)2+t2=4+t2,PC2=(1﹣0)2+(t﹣3)2=1+(t﹣3)2,BC2=18,①当是斜边时,,解得:;②当是斜边时,,解得:;③当是斜边时,,整理,得:,解得:,故点的坐标为:,,,【点睛】本题考查二次函数综合应用,涉及待定系数法、函数图象上点坐标的特征、直角三角形的判定等知识,解题的关键是用含字母的代数式表示相关点的坐标及相关线段的长度.2、(1)(2)18(3)1或5【解析】【分析】(1)把点,,代入二次函数解析式:y=ax2+bx+c,求出即可;(2)分别求出A、B、C、P四点的坐标.利用S四边形ACBP=S△ABP+S△ABC进行计算;(3)观察抛物线的图像可直接得到结果.(1)解:(1)设二次函数的表达式为(,,为常数,),由题意知,该函数图象经过点,,,得,解得,∴二次函数的表达式为.(2)解:∵当y=0时,解得:x1=1,x2=5∴点A坐标为(1,0)、点B坐标为(5,0);当x=0时,y=-5,∴点C坐标为(0,-5);把化为y=-(x-3)2+4∴点P坐标为(3,4);由题意可画图如下:∴S四边形ACBP=S△ABP+S△ABC==18,故答案是:18;(3)由图像知:将抛物线向左平移1个单位长度或5个单位长度,抛物线经过原点.故:m=1或.【点睛】本题考查了待定系数法求二次函数的解析式:二次函数的解析式可设为一般式、顶点式或交点式.也考查了二次函数的性质.解题的关键是掌握数形结合能力.3、(1)见解析(2)【解析】【分析】(1)根据切线的判定方法,证出即可;(2)由勾股定理得,,,在中,根据,结合锐角三角函数求出角,再利用扇形的面积的公式求解即可.(1)解:如图,连接OB,∵AB是的切线,∴,即,∵BC是弦,,∴,∴,在和中,,∴,∴,即,∴AC是的切线;(2)解:在中,由勾股定理得,,,在中,,∴,∴,∴,∴.【点睛】本题考查切线的判定和性质,三角形全等的判定及性质、勾股定理、锐角三角函数、扇形的面积公式,解题的关键是掌握切线的判定方法,锐角三角函数的知识求解.4、(1)①,②(4,3)(2)见解析【解析】【分析】(1)①过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,利用因式分解法解出一元二次方程,求出OD、OC,根据垂径定理求出DH,根据勾股定理计算求出半径,根据圆周角定理得到∠ADB=90°,根据正切的定义计算即可;②过点B作BE⊥x轴于点E,作AG⊥BE于G,根据平行线分线段成比例定理定理分别求出OE、BE,得到点B的坐标;(2)过点E作EH⊥x轴于H,证明△EHD≌△EFB,得到EH=EF,DH=BF,再证明Rt△EHC≌Rt△EFC,得到CH=CF,结合图形计算,证明结论.(1)解:①以AB为直径的圆的圆心为P,过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,则DH=HC=DC,四边形AOHF为矩形,∴AF=OH,FH=OA=1,解方程x2﹣4x+3=0,得x1=1,x2=3,∵OC>OD,∴OD=1,OC=3,∴DC=2,∴DH=1,∴AF=OH=2,设圆的半径为r,则PH2=,∴PF=PH﹣FH,在Rt△APF中,AP2=AF2+PF2,即r2=22+(PH﹣1)2,解得:r=,PH=2,PF=PH﹣FH=1,∵∠AOD=90°,OA=OD=1,∴AD=,∵AB为直径,∴∠ADB=90°,∴BD===3,∴tan∠ABD===;②过点B作BE⊥x轴于点E,交圆于点G,连接AG,∴∠BEO=90°,∵AB为直径,∴∠AGB=90°,∵∠AOE=90°,∴四边形AOEG是矩形,∴OE=AG,OA=EG=1,∵AF=2,∵PH⊥DC,∴PH⊥AG,∴AF=FG=2,∴AG=OE=4,BG=2PF=2,∴BE=3,∴点B的坐标为(4,3);(2)证明:过点E作EH⊥x轴于H,∵点E是的中点,∴=,∴ED=EB,∵四边形EDCB为圆P的内接四边形,∴∠EDH=∠EBF,在△EHD和△EFB中,,∴△EHD≌△EFB(AAS),∴EH=EF,DH=BF,在Rt△EHC和Rt△EFC中,,∴Rt△EHC≌Rt△EFC(HL),∴CH=CF,∴2CF=CH+CF=CD+DH+BC﹣BF=BC+CD.【点睛】本题考查的是圆周角定理、全等三角形的判定和性质、垂径定理、勾股定理的应用,正确作出辅助线、求出圆的半径是解题的关键.5、(1)PO,垂线段最短;(2);(3)①DE的最小值是1;②△BPE的面积为;(4)AE的最小值为.【解析】【分析】(1)根据垂线段的性质即可解答;(2)由(1)知当PC⊥AB时,PC取得最小值,利用面积法即可求解;(3)①根据旋转的性质,旋转前后的图形对应线段、对应角相等,可证得△ABP≌△CBE,得到∠BCE=30°.得到点E在射线CE上,根据“垂线段最短”这一定理,当∠DEC=90°时,DE最短,据此求解即可;②利用勾股定理求得EC=,即AP=,再利用勾股定理先后求得AD、PD、BP的长,即可求解;(4)作出如图的辅助线,先判断出点E在直线GH上运动,根据“垂线段最短”这一定理,当当AE⊥GH时,AE最短,利用相似三角形的判定和性质、勾股定理以及三角形面积公式即可求解.【详解】解:(1)∵PO⊥直线m,∴从直线外一点到这条直线所作的垂线段最短.故答案为:PO,垂线段最短;(2)由(1)知当PC⊥AB时,PC取得最小值,S△ABC=ACBC=ABPC,∴PC=,即CP的最小值为,故答案为:;(3)①由旋转知∠PBE=60°,BP=BE,∴△PBE是等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考试题及答案九科
- 2025精致家居装修合同
- 动火安全考试题及答案
- 电气基础考试题目及答案
- 地理西湖高考试题及答案
- 道县进城考试题目及答案
- 2025年中国浓缩料预混料项目商业计划书
- 大学python考试题目及答案
- 大班考试题库及答案
- 户外广告投放协议书
- 人工智能偏见与公正性-洞察阐释
- 2025年时事政治考试题及参考答案(100题)
- T/CATCM 031-2024柔毛淫羊藿种苗分级标准
- T/GDMIA 001-2019超细粒度砂磨机
- 2025年10月自考15040习概押题及答案
- 项目启动阶段工作准备计划安排书
- 超星尔雅学习通《中国近现代史纲要(首都师范大学)》2025章节测试附答案2
- 新生儿早产儿个案护理
- 2025年中国华电集团有限公司招聘笔试参考题库含答案解析
- GB/T 22517.1-2024体育场地使用要求及检验方法第1部分:综合体育场馆木地板场地
- 2024-2025学年广东省深圳市南山育才集团九年级(上)期中语文试卷
评论
0/150
提交评论