




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
京改版数学9年级上册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、已知抛物线P:,将抛物线P绕原点旋转180°得到抛物线,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,则a的取值范围是(
)A. B. C. D.2、如图,四边形OABC是平行四边形,点A的坐标为A(3,0),∠COA=60°,D为边AB的中点,反比例函数y=(x>0)的图象经过C,D两点,直线CD与y轴相交于点E,则点E的坐标为(
)A.(0,2) B.(0,3) C.(0,5) D.(0,6)3、对于函数的图象,下列说法不正确的是(
)A.开口向下 B.对称轴是直线C.最大值为 D.与轴不相交4、如图,在中,,,将绕点C顺时针旋转得到,点在上,交于F,则图中与相似的三角形有(不再添加其他线段)(
)A.1个 B.2个 C.3个 D.4个5、如图,Rt△ABC中,,,,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿AB向B点运动,设E点的运动时间为t秒,连接DE,当以B、D、E为顶点的三角形与△ABC相似时,t的值为()A.2或3.5 B.2或3.2 C.2或3.4 D.3.2或3.46、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①4a+2b+c>0
;②y随x的增大而增大;③方程ax2+bx+c=0两根之和小于零;④一次函数y=ax+bc的图象一定不过第二象限,其中正确的个数是(
)A.4个 B.3个 C.2个 D.1个二、多选题(7小题,每小题2分,共计14分)1、已知四条线段a,b,c,d是成比例线段,即,下列说法正确的是(
)A.ad=bc B. C. D.2、如图,在△EFG中,∠EFG=90°,FH⊥EG,下面等式中正确的是(
)A. B.C. D.3、利用反例可以判断一个命题是错误的,下列命题错误的是(
)A.若,则 B.对角线相等的四边形是矩形C.函数的图象是中心对称图形 D.六边形的外角和大于五边形的外角和4、下列说法中,不正确的是()A.三点确定一个圆B.三角形有且只有一个外接圆C.圆有且只有一个内接三角形D.相等的圆心角所对的弧相等5、在△ABC中,∠C=90°,下列各式一定成立的是(
)A.a=b∙cosA B.a=c∙cosB C.c= D.a=b∙tanA6、如图,在矩形、锐角三角形、正五边形、直角三角形的外边加一个宽度一样的外框,保证外框的边与原图形的对应边平行,则外框与原图一定相似的有()A. B.C. D.7、如图所示,AB为斜坡,D是斜坡AB上一点,斜坡AB的坡度为i,坡角为,于点C,下面正确的有(
)A. B.C. D.第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、如图,在△ABC中,∠A=90°,AB=3,AC=4,点M,Q分别是边AB,BC上动点(点M不与A,B重合),且MQ⊥BC,MN∥BC交AC于点N.联结NQ,设BQ=x.则当x=_____.时,四边形BMNQ的面积最大值为_______.2、在平面直角坐标系中,已知和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为_____.3、在等腰△ABC中,AB=AC,AD⊥BC于D,G是重心,若AG=9cm,则GD=_______cm.4、如图,抛物线的图象与坐标轴交于点、、,顶点为,以为直径画半圆交轴的正半轴于点,圆心为,是半圆上的一动点,连接,是的中点,当沿半圆从点运动至点时,点运动的路径长是__________.5、《九章算术》是中国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中最重要的一种.中有下列问题:“今有邑方不知大小,各中开门.出北门八十步有木,出西门二百四十五步见木.问邑方有几何?”意思是:如图,点M、点N分别是正方形ABCD的边AD、AB的中点,,,EF过点A,且步,步,已知每步约40厘米,则正方形的边长约为__________米.6、已知二次函数,当x=_______时,y取得最小值.7、如图,在RT△ABC中,,点D是的中点,过点D作,垂足为点E,连接,若,,则________.四、解答题(6小题,每小题10分,共计60分)1、每年九月开学前后是文具盒的销售旺季,商场专门设置了文具盒专柜李经理记录了天的销售数量和销售单价,其中销售单价(元/个)与时间第天(为整数)的数量关系如图所示,日销量(个)与时间第天(为整数)的函数关系式为:直接写出与的函数关系式,并注明自变量的取值范围;设日销售额为(元),求(元)关于(天)的函数解析式;在这天中,哪一天销售额(元)达到最大,最大销售额是多少元;由于需要进货成本和人员工资等各种开支,如果每天的营业额低于元,文具盒专柜将亏损,直接写出哪几天文具盒专柜处于亏损状态2、根据下列条件,求二次函数的解析式.(1)图象经过(0,1),(1,﹣2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);3、如图1,某同学家的一面窗户上安装有遮阳篷,图2和图3是截面示意图,CD是遮阳篷,窗户AB为1.5米,BC为0.5米.该遮阳篷有伸缩功能.如图2,该同学在夏季某日的正午时刻测得太阳光和水平线的夹角为60°,遮阳篷CD正好将进入窗户AB的阳光挡住;如图3,该同学在冬季某日的正午时刻测得太阳光和水平线的夹角为30°,将遮阳篷收缩成CD′时,遮阳篷正好完全不挡进入窗户AB的阳光.(1)计算图3中CD′的长度比图2中CD的长度收缩了多少米;(结果保留根号)(2)如果图3中遮阳篷的长度为图2中CD的长度,请计算该遮阳篷落在窗户AB上的阴影长度为多少米?(请在图3中画图并标出相应字母,然后再计算)4、在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.①当时,请直接写出“W区域”内的整点个数;②当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.5、如图,矩形在平面直角坐标系中,交轴于点,动点从原点出发,以每秒1个单位长度的速度沿轴正方向移动,移动时间为秒,过点P作垂直于轴的直线,交于点M,交或于点N,直线扫过矩形的面积为.(1)求点的坐标;(2)求直线移动过程中到点之前的关于的函数关系式;(3)在直线移动过程中,第一象限的直线上是否存在一点,使是等腰直角三角形?若存在,直接写出点的坐标;若不存在,说明理由6、若二次函数图像经过,两点,求、的值.-参考答案-一、单选题1、A【解析】【分析】先求出抛物线的解析式,再列出不等式,求出其解集或,从而可得当x=1时,,有成立,最后求出a的取值范围.【详解】解:∵抛物线P:,将抛物线P绕原点旋转180°得到抛物线,∴抛物线P与抛物线关于原点对称,设点(x,y)在抛物线P’上,则点(-x,-y)一定在抛物线P上,∴∴抛物线的解析式为,∵当时,在抛物线上任取一点M,设点M的纵坐标为t,若,即令,∴,解得:或,设,∵开口向下,且与x轴的两个交点为(0,0),(4a,0),即当时,要恒成立,此时,∴当x=1时,即可,得:,解得:,又∵∴故选A【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.2、B【解析】【分析】作CE⊥x轴于点E,过B作BF⊥x轴于F,过D作DM⊥x轴于M,设C的坐标为(x,x),表示出D的坐标,将C、D两点坐标代入反比例函数的解析式,解关于x的方程求出x即可得到点C、D的坐标,进而求得直线CD的解析式,最后计算该直线与y轴交点坐标即可得出结果.【详解】解:作CE⊥x轴于点E,则∠CEO=90°,过B作BF⊥x轴于F,过D作DM⊥x轴于M,则BF=CE,DM∥BF,BF=CE,∵D为AB的中点,∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴设C的坐标为(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四边形OABC是平行四边形,A(3,0),∴OF=3+x,OM=3+x,即D点的坐标为(3+x,),把C、D的坐标代入y=得:k=x•x=(3+x)•,解得:x1=2,x2=0(舍去),∴C(2,2),D(4,),设直线CD解析式为:y=ax+b,则,解得,∴直线CD解析式为:,∴当x=0时,,∴点E的坐标为(0,).故选:B.【考点】本题主要考查了平行四边形的性质、运用待定系数法求函数的解析式以及含度角的直角三角形的性质.根据反比例函数图象经过C、D两点,得出关于x的方程是解决问题的关键.3、D【解析】【分析】根据二次函数的性质,进行判断,即可得到答案.【详解】解:∵,则开口向下,故A正确;对称轴是直线,故B正确;当,y有最大值k,故C正确;当,,与y轴肯定有交点,故D错误;故选择:D.【考点】本题考查了二次函数的性质,解题的关键是熟记二次函数的性质.4、D【解析】【分析】根据旋转的性质及相似三角形的判定方法进行分析,找出存在的相似三角形即可.【详解】根据题意得:BC=B′C,AB=A′B′,AC=A′C,∠B=∠B′,∠A=∠A′=30°,∠ACB=∠A′CB′=90°∵∠A=30°,∠ACB=90°∴∠B=60°∴BB′=BC=B′C,∠B=∠BCB′=∠BB′C=60°∴∠B′CA=30°,∠ACA′=60°,A′B′∥BC∴∠B′FC=∠B′FA=90°∴△AB′F∽△ABC∽△A′B′C∽△A′CF∽△CFB′∴有4个故选D.【考点】考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.5、A【解析】【分析】求出AB=2BC=4cm,分两种情况:①当∠EDB=∠ACB=90°时,DE∥AC,△EBD∽△ABC,得出AE=BE=AB=2cm,即可得出t=2s;②当∠DEB=∠ACB=90°时,证出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=BD=cm,得出AE=3.5cm,t=3.5s;即可得出结果.【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴AB=2BC=4cm,分两种情况:①当∠EDB=∠ACB=90°时,DE∥AC,所以△EBD∽△ABC,E为AB的中点,AE=BE=AB=2cm,∴t=2s;②当∠DEB=∠ACB=90°时,∵∠B=∠B,∴△DBE∽△ABC,∴∠BDE=∠A=30°,∵D为BC的中点,∴BD=BC=1cm,∴BE=BD=0.5cm,∴AE=3.5cm,∴t=3.5s;综上所述,当以B、D、E为顶点的三角形与△ABC相似时,t的值为2或3.5,故选A.【考点】本题考查了相似三角形的判定、平行线的性质、含30°角的直角三角形的性质等知识;熟记相似三角形的判定方法是解决问题的关键,注意分类讨论.6、D【解析】【分析】根据函数的图象可知x=2时,函数值的正负性;并且可知与x轴有两个交点,即对应方程有两个实数根;函数的增减性需要找到其对称轴才知具体情况;由函数的图象还可知b、c的正负性,一次函数y=ax+bc所经过的象限进而可知正确选项.【详解】∵当x=2时,y=4a+2b+c,对应的y值为正,即4a+2b+c>0,故①正确;∵因为抛物线开口向上,在对称轴左侧,y随x的增大而减小;在对称轴右侧,y随x的增大而增大,故②错误;∵由二次函数y=ax2+bx+c(a≠0)的图象可知:函数图象与x轴有两个不同的交点,即对应方程有两个不相等的实数根,且正根的绝对值较大,∴方程ax2+bx+c=0两根之和大于零,故③错误;∵由图象开口向上,知a>0,与y轴交于负半轴,知c<0,由对称轴,知b<0,∴bc>0,∴一次函数y=ax+bc的图象一定经过第二象限,故④错误;综上,正确的个数为1个,故选:D.【考点】本题考查了二次函数的图象与系数的关系以及一次函数的图象,利用了数形结合的思想,此类题涉及的知识面比较广,能正确观察图象是解本题的关键.二、多选题1、ABD【解析】【分析】根据比例的性质将原式变形,分别进行判断即可,进而得出答案.【详解】解:∵四条线段a,b,c,d是成比例线段,即,∴A.利用内项之积等于外项之积,ad=bc,故选项正确,B.利用内项之积等于外项之积,a(b+d)=b(a+c),ab+ad=ab+bc,即ad=bc,故选项正确,C.∵,∴,故选项错误,D.∵∴,故选项正确,故选:ABD.【考点】此题主要考查了比例的性质,将比例式灵活正确变形得出是解题关键.2、ABD【解析】【分析】先根据同角的余角相等得出∠G=∠EFH,再根据三角函数的定义求解即可.【详解】解:∵在△EFG中,∠EFG=90°,FH⊥EG,∴∠E+∠G=90°,∠E+∠EFH=90°,∴∠EFH=∠G,∴sinG=sin∠EFH=.所以选项A、B、D都是正确的,故选:ABD.【考点】本题利用了同角的余角相等和锐角三角函数的定义解答,属较简单题目.3、ABD【解析】【分析】根据有理数的乘法、矩形的判定定理、反比例函数的性质、多边形的外角性质逐一判断即可.【详解】解:A、当b=0,a≠0时,则,该选项符合题意;B、如图:四边形ABCD的对角线AC=BD,但四边形ABCD不是矩形,该选项符合题意;C、函数的图象是中心对称图形,该选项不符合题意;D、多边形的外角和都相等,等于360°,该选项符合题意;故选:ABD.【考点】本题考查了命题与定理的知识,解题的关键是了解判断一个命题是假命题的时候可以举出反例.4、ACD【解析】【分析】根据不共线三点确定一个圆即可判断A,B,C选项,根据同圆或等圆中,相等的圆心角所对的弧相等即可判断D选项【详解】不共线三点确定一个圆,故A选项不正确,B选项正确;一个圆上可以找出无数个不共线的三个点,即可构成无数个三角形,这些三角形都是这个圆的内接三角形圆有无数个内接三角形;故C选项不正确;同圆或等圆中,相等的圆心角所对的弧相等,故D选项不正确.故选ACD.【考点】本题考查了圆的内接三角形的定义,不共线三点确定一个圆,同圆或等圆中,相等的圆心角所对的弧相等,理解圆的相关性质是解题的关键.5、BCD【解析】【分析】作出图形,然后根据三角函数的定义对各选项分析判断后利用排除法求解.【详解】解:如图,A、a=b•tanA,故选项A错误,不符合题意;B、a=c•cosB正确,故关系式一定成立;C、c=正确,故关系式一定成立;D、a=b∙tanA正确,故关系式一定成立;故选BCD.【考点】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.6、BCD【解析】【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【详解】解:矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件,故A不符合题意;锐角三角形、正五边形、直角三角形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件,故B、C、D符合题意.故选BCD.【考点】此题主要考查了相似图形判定,注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.7、BCD【解析】【分析】根据坡度的定义解答即可.【详解】交于点,交于点,,,,,,∴BCD正确.故选:BCD.【考点】本题考查了解直角三角形的应用-坡度坡角问题,熟记坡度的定义是解题的关键.三、填空题1、
【解析】【分析】先由勾股数可得BC的长,再由△QBM∽△ABC列出比例式,用含x的式子表示出QM和BM,然后由平行线的性质得比例式,解出MN,最后由三角形的面积公式得出四边形BMNQ的面积表达式,根据二次函数的性质可得答案.【详解】解:∵∠A=90°,AB=3,AC=4,∴BC=5,∵△QBM∽△ABC,∴==,即==,∴QM=x,BM=x,∵MN∥BC,∴=,即=,∴MN=5﹣x,∴四边形BMNQ的面积为:,∴当x=时,四边形BMNQ的面积最大,最大值为.故答案为:,.【考点】本题主要考查了二次函数的性质、相似三角形及勾股定理,关键是根据勾股定理求出线段的长,然后根据相似三角形得到比例列出函数关系式,最后用二次函数的性质求解即可.2、4【解析】【分析】通过A、B两点得出对称轴,再根据对称轴公式算出b,由此可得出二次函数表达式,从而算出最小值即可推出n的最小值.【详解】∵A、B的纵坐标一样,∴A、B是对称的两点,∴对称轴,即,∴b=-4.∴抛物线解析式为:.∴抛物线顶点(2,-3).∴满足题意n的最小值为4,故答案为:4.【考点】本题考查二次函数对称轴的性质,顶点式的变形及抛物线的平移,关键在于根据对称轴的性质从题意中判断出对称轴.3、4.5【解析】【分析】由三角形的重心的性质即可得出答案.【详解】解:∵AB=AC,AD⊥BC于D,∴AD是△ABC的中线,∵G是△ABC的重心,∴AG=2GD,∵AG=9cm,∴GD=4.5cm,故答案为:4.5.【考点】本题考查了三角形的重心,三角形三条中线的交点叫做三角形的重心,三角形的重心到一个顶点的距离等于它到对边中点距离的两倍.4、【解析】【分析】先求出A、B、E的坐标,然后求出半圆的直径为4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,计算即可.【详解】解:,∴点E的坐标为(1,-2),令y=0,则,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,如图,∴点运动的路径长是.【考点】本题属于二次函数和圆的综合问题,考查了运动路径的问题,熟练掌握二次函数和圆的基础是解题的关键.5、112【解析】【分析】根据题意,可知Rt△AEN∽Rt△FAN,从而可以得到对应边的比相等,从而可以求得正方形的边长.【详解】解:∵点M、点N分别是正方形ABCD的边AD、AB的中点,∴,∴AM=AN,由题意可得,∠ANF=∠EMA=90°,∠NAF+∠AFN=∠NAF+∠EAM=90°,∴∠AFN=∠EAM,∴Rt△AEM∽Rt△FAN,∴,∵AM=AN,∴,解得:AM=140,∴AD=2AM=280(步),∴(米)故答案为:112.【考点】本题考查相似三角形的应用、数学常识、正方形的性质,解答本题的关键是明确题意.利用相似三角形的性质和数形结合的思想解答.6、1【解析】【分析】根据抛物线的顶点坐标和开口方向即可得出答案.【详解】解:,该抛物线的顶点坐标为,且开口方向向上,当时,取得最小值,故答案为:1.【考点】本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法.7、3【解析】【分析】根据直角三角形的性质得到AB=10,利用勾股定理求出AC,再说明DE∥AC,得到,即可求出DE.【详解】解:∵∠ACB=90°,点D为AB中点,∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案为:3.【考点】本题考查了直角三角形的性质,勾股定理,平行线分线段成比例,解题的关键是通过平行得到比例式.四、解答题1、(1)y=,(2)w=,在这15天中,第9天销售额达到最大,最大销售额是3600元,(3)第13天、第14天、第15天这3天,专柜处于亏损状态.【解析】【分析】(1)用待定系数法可求与的函数关系式;(2)利用总销售额=销售单价×销售量,分三种情况,找到(元)关于(天)的函数解析式,然后根据函数的性质即可找到最大值.(3)先根据第(2)问的结论判断出在这三段内哪一段内会出现亏损,然后列出不等式求出x的范围,即可找到答案.【详解】解:(1)当时,设直线的表达式为将代入到表达式中得解得∴当时,直线的表达式为∴y=,(2)由已知得:w=py.当1≤x≤5时,w=py=(-x+15)(20x+180)=-20x2+120x+2700=-20(x-3)2+2880,当x=3时,w取最大值2880,当5<x≤9时,w=10(20x+180)=200x+1800,∵x是整数,200>0,∴当5<x≤9时,w随x的增大而增大,∴当x=9时,w有最大值为200×9+1800=3600,当9<x≤15时,w=10(-60x+900)=-600x+9000,∵-600<0,∴w随x的增大而减小,又∵x=9时,w=-600×9+9000=3600.∴当9<x≤15时,W的最大值小于3600综合得:w=,在这15天中,第9天销售额达到最大,最大销售额是3600元.(3)当时,当时,y有最小值,最小值为∴不会有亏损当时,当时,y有最小值,最小值为∴不会有亏损当时,解得∵x为正整数∴∴第13天、第14天、第15天这3天,专柜处于亏损状态.【考点】本题主要考查二次函数和一次函数的实际应用,掌握二次函数和一次函数的性质是解题的关键.2、(1)y=4x2﹣7x+1;(2)y=﹣2(x﹣2)2+3.【解析】【分析】(1)先设出抛物线的解析式为y=ax2+bx+c,再将点(0,1),(1,−2),(2,3)代入解析式中,即可求得抛物线的解析式;(2)由于已知抛物线的顶点坐标,则可设顶点式y=a(x−2)2+3,然后把(3,1)代入求出a的值即可.【详解】解:(1)设出抛物线的解析式为y=ax2+bx+c,将(0,1),(1,﹣2),(2,3)代入解析式,得:,解得:,∴抛物线解析式为:y=4x2﹣7x+1;(2)设抛物线解析式为y=a(x﹣2)2+3,把(3,1)代入得:a(3﹣2)2+3=1,解得a=﹣2,所以抛物线解析式为y=﹣2(x﹣2)2+3.【考点】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.3、(1)图3中CD′的长度比图2中CD的长度收缩了米;(2)该遮阳篷落在窗户AB上的阴影长度为米.【解析】【分析】(1)解直角△ACD,求出CD,再解直角△BCD′,求出CD′,然后计算CD﹣CD′的长度即可;(2)图3中遮阳蓬的长度为图2中CD的长度时,过D作DE∥BD′,交AB于E,解直角△ECD,求出CE,再计算CE-BC即可.【详解】(1)在直角△ACD中,∵AC=AB+BC=2米,∠CAD=30°,∴tan∠CAD=,∴CD=AC•tan∠CAD=2×=(米).在直角△BCD′中,∵BC=0.5米,∠CBD′=60°,∴tan∠CBD′=,∴CD′=BC•tan∠CBD′=0.5×=(米),∴CD﹣CD′=﹣=(米).故图3中CD′的长度比图2中CD的长度收缩了米;(2)如图,图3中遮阳篷的长度为图2中CD的长度时,过D作DE∥BD′,交AB于E.在直角△ECD中,∵CD=米,∠CED=60°,∴tan∠CED=,∴CE===,∴BE=CE﹣BC=﹣0.5=(米).故该遮阳篷落在窗户AB上的阴影长度为米.【考点】本题考查了解直角三角形的实际应用,掌握解直角三角形的方法是解题的关键.4、(1)顶点P的坐标为;(2)①6个;②,.【解析】【分析】(1)由抛物线解析式直接可求;(2)①由已知可知A(0,2),C(2+,-2),画出函数图象,观察图象可得;②分两种情况求:当a>0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a=,则<a≤1;当a<0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-,则-1≤a<-.【详解】解:(1)∵y=ax2-4ax+2a=a(x-2)2-2a,∴顶点为(2,-2a);(2)如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老年人保护性约束课件
- 老年人保健知识培训总结课件
- 山东省日照市东港区某中学2024-2025学年九年级下学期三模考试数学试卷(附答案)
- 人教版八年级英语下册专练:阅读理解20篇(含答案)
- 老年专科护士课件
- CN120199976A 阻燃抗收缩涂层自交联锂电池隔膜及其成型工艺
- CN120197083A 一种面向数据空间信息演化过程的数据分级方法
- 热点09 海-气相互作用与全球气候变化-2024年高考地理专练(新高考专用)
- 2020年7月国开电大法学本科《国际法》期末纸质考试试题及答案
- 老师上课课件改成AV
- 金融领域反腐
- 应急物业合同范本(2篇)
- 高原施工保障方案
- 《颅内压增高的临床表现》教学课件
- 三洋洗衣机XQB60-M808使用说明书
- DL∕ T 802.7-2010 电力电缆用导管技术条件 第7部分:非开挖用改性聚丙烯塑料电缆导管
- (正式版)CB∕T 4557-2024 船舶行业企业劳动防护用品配备要求
- DL-T-1928-2018火力发电厂氢气系统安全运行技术导则
- JT-T-325-2018营运客运类型划分及等级评定
- 三位数加减法竖式计算-3位数的加减法竖式
- 青少年药物滥用的影响因素与预防方法
评论
0/150
提交评论