




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
试卷第=page22页,共=sectionpages22页试卷第=page11页,共=sectionpages11页中考数学总复习《圆》通关考试题库考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、一个商标图案如图中阴影部分,在长方形中,,,以点为圆心,为半径作圆与的延长线相交于点,则商标图案的面积是(
)A. B.C. D.2、如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56° B.62° C.68° D.78°3、如图,点在上,,则(
)A. B. C. D.4、已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30° B.60° C.30°或150° D.60°或120°5、如图,AB是⊙O的弦,等边三角形OCD的边CD与⊙O相切于点P,连接OA,OB,OP,AD.若∠COD+∠AOB=180°,AB=6,则AD的长是()A.6 B.3 C.2 D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在中,,,以点为圆心、为半径的圆交于点,则弧AD的度数为________度.2、如图,在中,∠ABC=90°,∠A=58°,AC=18,点D为边AC的中点.以点B为圆心,BD为半径画圆弧,交边BC于点E,则图中阴影部分图形的面积为______.a3、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为_____.4、如图,在中,,,,将绕顺时针旋转后得,将线段绕点逆时针旋转后得线段,分别以,为圆心,、长为半径画弧和弧,连接,则图中阴影部分面积是________.5、某圆的周长是12.56米,那么它的半径是______________,面积是__________.三、解答题(5小题,每小题10分,共计50分)1、等边三角形的边长为1厘米,面积为0.43平方厘米.以点为圆心,长为半径在三角形外画弧,交的延长线于点,形成扇形;以点为圆心,长为半径画弧,交的延长线于点,形成扇形;以点为圆心,长为半径画弧,交的延长线于点,形成扇形.(1)求所得的图形的周长;(结果保留)(2)照此规律画至第十个扇形,求所围成的图形的面积以及所画出的所有弧长的和.(结果保留)2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与⊙O相切?3、已知抛物线经过点(m,﹣4),交x轴于A,B两点(A在B左边),交y轴于C点对于任意实数n,不等式恒成立.(1)抛物线解析式;(2)在BC上方的抛物线对称轴上是否存在点D,使得∠BDC=2∠BAC,若有求出点D的坐标,若没有,请说明理由;(3)将抛物线沿x轴正方向平移一个单位,把得到的图象在x轴下方的部分沿x轴向上翻折,图的其余部分保持不变,得到一个新的图象G,若直线y=x+b与新图象G有四个交点,求b的取值范围(直接写出结果即可).4、如图,,分别切、于点、.切于点,交于点与不重合).(1)用直尺和圆规作出;(保留作图痕迹,不写作法)(2)若半径为1,,求的长.5、如图所示,四边形ABCD的顶点在同一个圆上,另一个圆的圆心在AB边上,且该圆与四边形ABCD的其余三条边相切.求证:.-参考答案-一、单选题1、D【解析】【分析】根据题意作辅助线DE、EF使BCEF为一矩形,从图中可以看出阴影部分的面积=三角形的面积-(正方形的面积-扇形的面积),依据面积公式进行计算即可得出答案.【详解】解:作辅助线DE、EF使BCEF为一矩形.则S△CEF=(8+4)×4÷2=24cm2,S正方形ADEF=4×4=16cm2,S扇形ADF==4πcm2,∴阴影部分的面积=24-(16-4π)=.故选:D.【考点】本题主要考查扇形的面积计算,解题的关键是作出辅助线并从图中看出阴影部分的面积是由哪几部分组成的.2、C【解析】【分析】由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.【详解】解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选:C.【考点】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.3、D【解析】【分析】先证明再利用等弧的性质及圆周角定理可得答案.【详解】解:点在上,,故选:【考点】本题考查的两条弧,两个圆心角,两条弦之间的关系,圆周角定理,等弧的概念与性质,掌握同弧或等弧的概念与性质是解题的关键.4、D【解析】【分析】由图可知,OA=10,OD=5.根据特殊角的三角函数值求出∠AOB的度数,再根据圆周定理求出∠C的度数,再根据圆内接四边形的性质求出∠E的度数即可.【详解】解:由图可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°即弦AB所对的圆周角的度数是60°或120°,故选D.【考点】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.5、C【解析】【分析】如图,过作于过作于先证明三点共线,再求解的半径,证明四边形是矩形,再求解从而利用勾股定理可得答案.【详解】解:如图,过作于过作于是的切线,三点共线,为等边三角形,四边形是矩形,故选:【考点】本题考查的是等腰三角形,等边三角形的性质,勾股定理的应用,矩形的判定与性质,切线的性质,锐角三角函数的应用,灵活应用以上知识是解题的关键.二、填空题1、【解析】【分析】由三角形内角和得∠A=90°﹣∠B=65°.再由AC=CD,∠ACD度数可求,可解.【详解】连接CD.∵∠ACB=90°,∠B=25°,∴∠A=90°﹣∠B=65°.∵CA=CD,∴∠A=∠CDA=65°,∴∠ACD=180°﹣2∠A=50°,∴弧AD的度数是50度.【考点】本题考查了直角三角形,三角形内角和定理和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2、【解析】【分析】先根据直角三角形斜边上的中线性质得到BD=CD=9,则∠DBC=∠C=22°,然后根据扇形的面积公式计算.【详解】解:∵∠ABC=90°,点D为边AC的中点,∴BD=CD=AC=9,∴∠DBC=∠C,∵∠C=90°-∠A=90°-58°=32°,∴∠DBE=32°,∴图中阴影部分图形的面积=.故答案为:π.【考点】本题考查了扇形面积的计算:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=或S扇形=lR(其中l为扇形的弧长).也考查了直角三角形斜边上的中线性质.3、.【解析】【分析】先利用勾股定理求出AB=10,进而求出CD=BD=5,再求出CF=4,进而求出DF=3,再判断出FG⊥BD,利用面积即可得出结论.【详解】如图,在Rt△ABC中,根据勾股定理得,AB=10,∴点D是AB中点,∴CD=BD=AB=5,连接DF,∵CD是⊙O的直径,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,连接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切线,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,∴S△BDF=DF×BF=BD×FG,∴FG=,故答案为.【考点】此题主要考查了直角三角形的性质,勾股定理,切线的性质,三角形的中位线定理,三角形的面积公式,判断出FG⊥AB是解本题的关键.4、【解析】【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积计算即可得到答案.【详解】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴,由旋转得△EOF≌△BOA,∴∠OAB=∠EFO,∵∠FEO+∠EFO=∠FEO+∠HED=90°,∴∠EFO=∠HED,∴∠HED=∠OAB,∵∠DHE=∠AOB=90°,,∴△DHE≌△BOA(AAS),∴DH=OB=1,,∴阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积,故答案为:.【考点】本题考查的是扇形面积的计算、旋转的性质、全等三角形的判定和性质,掌握扇形的面积公式和旋转的性质是解题的关键.5、
2米
12.56平方米【解析】【分析】根据周长公式转化为,将C=12.56代入进行计算得到半径,继续利用面积公式,代入半径的值求出面积的结果.【详解】因为C=2πr,所以==2,所以r=2(米),因为S=πr2=3.14×22=12.56(平方米).故答案为:2米
12.56平方米.【考点】考查圆的面积和周长与半径之间的关系,学生必须熟练掌握圆的面积和周长的求解公式,选择相应的公式进行计算,利用公式是解题的关键.三、解答题1、(1)厘米;(2)平方厘米,厘米.【解析】【分析】(1)本题按照弧长公式依次求解扇形ADC、扇形DBE、扇形ECF的弧长,最后对应相加即可.(2)本题利用扇形面积公式求解第一个扇形至第三个扇形的面积,结合第一问各扇形弧长结果总结规律,得出普遍规律后将数值代入公式,累次相加即可求解.【详解】(1)由已知得:扇形ADC的半径长为1,圆心角为120°;扇形DBE半径长为2,圆心角为120°;扇形ECF半径长为3,圆心角为120°.故据弧长公式可得:扇形ADC弧长;扇形DBE弧长;扇形ECF弧长;故图形CDEFC的周长为:.(2)根据扇形面积公式可得:第一个扇形的面积为,由上一问可知其弧长为;第二个扇形的面积为,弧长为;第三个扇形的面积为,弧长为;总结规律可得第个扇形面积为,第个扇形弧长为.故画至第十个图形所围成的图形面积和为:;所有的弧长和为:.【考点】本题考查扇形与弧长公式的延伸,出题角度较为新颖,解题关键在于需要根据图形特点总结规律,其次注意计算即可.2、(1)当时,四边形PQCD为平行四边形;(2)当t=2秒时,PQ与⊙O相切.【解析】【分析】(1)由题意得:,,则,再由四边形PQCD是平行四边形,得到DP=CQ,由此建立方程求解即可;(2)设PQ与⊙O相切于点H过点P作PE⊥BC,垂足为E.先证明四边形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切线长定理得到AP=PH,HQ=BQ,则PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,则122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【详解】解:(1)由题意得:,,∴,∵四边形PQCD是平行四边形,∴DP=CQ,∴,解得,∴当时,四边形PQCD为平行四边形;(2)设PQ与⊙O相切于点H过点P作PE⊥BC,垂足为E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四边形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB为⊙O的直径,∠ABC=∠DAB=90°,∴AD、BC为⊙O的切线,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD边运动的时间为秒.∵t=9>8,∴t=9(舍去),∴当t=2秒时,PQ与⊙O相切.【考点】本题主要考查了切线长定理,矩形的性质与判定,勾股定理,平行四边形的性质等等,解题的关键在于能够熟练掌握切线长定理.3、10参考答案:1.(1);(2)点D的坐标为(1,-1);(3).【解析】【分析】(1)由不等式恒成立可得点(m,﹣4)是抛物线的顶点坐标,求出,将点(﹣t,﹣4)代入求出t的值即可;(2)作线段BC的垂直平分线交对称轴于点D,交BC于E,则点D是△ABC的外心,可得∠BDC=2∠BAC,然后求出直线BC,直线DE的解析式即可解决问题;(3)作出图象G,求出直线y=x+b与图象G有三个交点时b的值,则根据图象可得直线y=x+b与图象G有四个交点时b的取值范围.(1)解:抛物线的对称轴为,∵不等式恒成立,∴抛物线的顶点坐标为(m,﹣4),∴,将点(﹣t,﹣4)代入得:,解得:(舍去),,∴抛物线解析式为:;(2)解:令,解得:,,∴A(-1,0),B(3,0),由可得C(0,-3),对称轴为,作线段BC的垂直平分线交对称轴于点D,交BC于E,∴E(,),∵抛物线对称轴是线段AB的垂直平分线,∴点D是△ABC的外心,∴∠BDC=2∠BAC,设直线BC的解析式为,代入B(3,0),C(0,-3)得,解得:,∴直线BC的解析式为,设直线DE的解析式为,代入E(,)得,∴m=0,∴直线DE的解析式为,当时,,∴点D的坐标为(1,-1);(3)解:图象G如图所示,由平移可知图象G过点(0,0),当直线y=x+b过点(0,0)时,b=0,将抛物线沿x轴正方向平移一个单位后解析式为,沿x轴向上翻折后解析式为,由,得,整理得:,令,解得:,故若直线y=x+b与新图象G有四个交点,b的取值范围为:.【考点】本题考查了待定系数法的应用,二次函数的图象
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- todo不定式语法课件
- 2025年暑期师德师风建设专题学习心得体会;春风化雨沐师心砥砺深耕育桃李
- qt图像处理课件
- 中考听力试卷及答案
- 2025年邮政五笔考试试题及答案
- 考研数学一真题及答案
- 食品安全进乡镇课件
- 2025年法语口试话题题目及答案
- 2025年趣味词汇试题及答案
- 彩色串珠规律题目及答案
- 2022年北京语言大学各单位新编长聘人员招聘需求笔试备考题库及答案解析
- 2022年四川雅安石棉县综合类事业单位招聘20人笔试备考题库及答案解析
- 部编版小学语文四年级上册课程纲要
- 完整解读中华人民共和国政府信息公开条例课件
- 幼儿园红色故事绘本:《闪闪的红星》 课件
- GB/T 5780-2016六角头螺栓C级
- 小学特色作业经验汇报课件
- 粘膜免疫 2课件
- 统计业务知识(统计法规)课件
- 地质勘察任务书模板
- 新湘科版科学五年级上册全册课件(精品PPT)
评论
0/150
提交评论