综合解析云南昆明实验中学7年级数学下册第五章生活中的轴对称专题练习试题(详解版)_第1页
综合解析云南昆明实验中学7年级数学下册第五章生活中的轴对称专题练习试题(详解版)_第2页
综合解析云南昆明实验中学7年级数学下册第五章生活中的轴对称专题练习试题(详解版)_第3页
综合解析云南昆明实验中学7年级数学下册第五章生活中的轴对称专题练习试题(详解版)_第4页
综合解析云南昆明实验中学7年级数学下册第五章生活中的轴对称专题练习试题(详解版)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南昆明实验中学7年级数学下册第五章生活中的轴对称专题练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、下列四个标志中,是轴对称图形的是()A. B. C. D.2、下面四个图形是轴对称图形的是()A. B. C. D.3、下列图案,是轴对称图形的为()A. B. C. D.4、下列图形是轴对称图形的是()A. B. C. D.5、下列图形是四家电信公司的标志,其中是轴对称图形的是()A. B.C. D.6、下列图形中,是轴对称图形的是()A. B.C. D.7、下列各图中不是轴对称图形的是()A. B.C. D.8、如图,AD,BE,CF依次是ABC的高、中线和角平分线,下列表达式中错误的是()A.AE=CE B.∠ADC=90° C.∠CAD=∠CBE D.∠ACB=2∠ACF9、北京2022年冬奥会会徽“冬梦”正式发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是()A. B. C. D.10、下列图形中不是轴对称图形的是()A. B.C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,若P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,P1P2=24,则△PMN的周长是___.若∠MPN=90°,则∠P1PP2的度数为___.2、如图的三角形纸片中,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,使得点C落在AB边上的点E处,折痕为BD,则△AED的周长=____.3、如图,在矩形中,,,点、分别在、上,将矩形沿折叠,使点、分别落在矩形外部的点、处,则整个阴影部分图形的周长为______.4、将一张长方形纸片按如图所示的方式折叠,BE、BD为折痕.若与重合,则∠EBD为______度.5、成轴对称的两个图形的主要性质是:(1)成轴对称的两个图形是________﹔(2)如果两个图形关于某条直线对称,那么对称轴是任何一对________的垂直平分线.6、如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的一点,写请出一个正确的结论__.7、如图,与关于直线对称,则∠B的度数为________°.8、如图,点D、

E分别在ABC的AB、AC边上,沿DE将ADE翻折,点A的对应点为点,∠EC=α,∠DB=β,且α<β,则∠A等于________(用含α、β表示).9、如图,点关于、的对称点分别是,,线段分别交、于、,cm,则的周长为________cm.10、如图,在ABC中,∠BAC=80°,∠C=45°,AD是ABC的角平分线,那么∠ADB=_____度.三、解答题(6小题,每小题10分,共计60分)1、如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.易得:AD=BD.(1)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD;(2)如图3,在四边形ABDE中,AB=10,DE=2,BD=6,C为BD边中点.若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.2、如图,三个顶点的坐标分别为,,(1)请画出关于轴成轴对称的图形;(2)写出、、的坐标;3、如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A,C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB边下方的点E处,记△ADE的周长为L,直接写出L的取值范围.4、如图,已知线段a和b,直线AB和CD相交于点O.利用尺规(直尺、圆规),按下列要求作图:(1)在射线OA,OB,OC上作线段OA',OB',OC',使它们分别与线段a相等;(2)在射线OD上作线段OD',使OD'与线段b相等;(3)连接A'C',C'B',B'D',D'A';(4)你得到了一个怎样的图形?5、请画出ABC关于直线l对称的(其中分别是A,B,C的对应点,不写画法,保留作图痕迹).6、综合与应用:根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数:点A表示__________,点B表示_______.(2)观察数轴,与点A的距离为4的点表示的数是_________和___________.(3)若将数轴折叠,使得点A与表示的点重合,则点B与数_________表示的点重合.(4)若数轴上M,N两点之间的距离为2020(点M在点N的左侧),且M,N两点经过(3)中的折叠后互相重合,则M、N两点表示的数分别是什么?-参考答案-一、单选题1、D【分析】利用轴对称图形的定义进行解答即可.【详解】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2、B【分析】轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,根据此概念进行分析.【详解】解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:B.【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3、D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A.不是轴对称图形,故本选项不符合题意;B.不是轴对称图形,故本选项不符合题意;C.不是轴对称图形,故本选项不符合题意.D.是轴对称图形,故本选项符合题意;故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、C【分析】根据轴对称图形的概念解答即可.【详解】A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.是轴对称图形,故本选项正确;D.不是轴对称图形,故本选项错误.故选C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5、C【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C.【点睛】本题考查了轴对称图形的定义,解题的关键是熟练掌握轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.6、A【分析】根据轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,进行判断即可.【详解】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:A.【点睛】本题考查了轴对称图形的识别,熟记定义是解本题的关键.7、B【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【详解】解:A、等边三角形是轴对称图形,不合题意;B、平行四边形不是轴对称图形,符合题意;C、正方形是轴对称图形,不符合题意;D、圆是轴对称图形,不合题意;故选:B.【点睛】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、C【分析】根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中,连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高.求解即可.【详解】解:A、BE是△ABC的中线,所以AE=CE,故本表达式正确;B、AD是△ABC的高,所以∠ADC=90,故本表达式正确;C、由三角形的高、中线和角平分线的定义无法得出∠CAD=∠CBE,故本表达式错误;D、CF是△ABC的角平分线,所以∠ACB=2∠ACF,故本表达式正确.故选:C.【点睛】本题考查了三角形的高、中线和角平分线的定义,是基础题,熟记定义是解题的关键.9、A【分析】利用轴对称图形的概念进行解答即可.【详解】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:A.【点睛】本题主要是考查了轴对称图形的概念,判别轴对称图形的关键是找对称轴.10、C【详解】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选:C【点睛】本题主要考查了轴对称图形的定义,熟练掌握沿对称轴折叠后,两部分能够完全重合的图形是轴对称图形是解题的关键.二、填空题1、24【分析】①根据轴对称的性质可得,,然后根据三角形的周长定义求出的周长为P1P2,从而得解;②根据等边对等角可得:,,由三角形外角的性质可得:,,再根据三角形内角和定理得:,最后依据各角之间得数量关系即可求出答案.【详解】解:①如图,∵P点关于OA、OB的对称点P1,P2,∴,,的周长,∵,∴的周长为24;②∵,,∴,,∴,,∵,∴,∴,∴;故①答案为:24;②答案为:.【点睛】题目主要考查轴对称的性质及等腰三角形的性质,三角形外角和定理等知识点,熟练掌握各知识点间的相互联系,融会贯通综合运用是解题关键.2、7【分析】根据折叠的性质,可得BE=BC=6,CD=DE,从而AE=AB-BE=2,再由△AED的周长=AD+DE+AE,即可求解.【详解】解:∵沿过点B的直线折叠这个三角形,使得点C落在AB边上的点E处,∴BE=BC=6,CD=DE,∵AB=8,∴AE=AB-BE=2,∴△AED的周长=AD+DE+AE=AD+CD+AE=AC+DE=5+2=7.故答案为:7【点睛】本题主要考查了折叠的性质,熟练掌握折叠前后对应线段相等,对应角相等是解题的关键.3、32【分析】根据折叠的性质,得FD=FD1,C1D1=CD,C1E=CE,则阴影部分的周长即为矩形的周长.【详解】解:根据折叠的性质,得FD=FD1,C1D1=CD,C1E=CE,则阴影部分的周长=矩形的周长=2×(12+4)=32.故答案为:32.【点睛】本题主要考查了翻折变换,关键是要能够根据折叠的性质得到对应的线段相等,从而求得阴影部分的周长.4、90【分析】根据折叠的性质和平角的定义即可得到结论.【详解】解:由折叠可知,∠ABE=∠A'BE=∠ABA′,∠CBD=∠C'BD=∠CBC′,∴∠DBE=∠A'BE+∠C'BD=∠ABA′+∠CBC′=(∠ABA'+∠CBC')=×180°=90°.故答案为:90.【点睛】本题考查了角的计算,折叠的性质,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.5、全等的对应点所连线段【分析】根据轴对称的性质:成轴对称的两个图形全等,如果两个图形成轴对称,那么对称轴是对应点的垂直平分线,进行求解即可.【详解】解:(1)成轴对称的两个图形是全等的;(2)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.故答案为:全等的,对应点所连线段.【点睛】本题主要考查了轴对称图形的性质,解题的关键在于能够熟练掌握相关知识进行求解.6、AP=BP(答案不唯一)【分析】根据轴对称图形的性质,即可求解.【详解】解:∵直线MN是四边形AMBN的对称轴,∴AP=BP.故答案为:AP=BP(答案不唯一)【点睛】本题主要考查了轴对称图形的性质,熟练掌握轴对称图形的关键是找到对称轴,图形关于对称轴折叠前后对应线段相等,对应角相等是解题的关键.7、105°【分析】根据轴对称的性质,轴对称图形全等,则∠A=∠A′,∠B=∠B′,∠C=∠C′,再根据三角形内角和定理即可求得.【详解】∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠A=∠A′,∠B=∠B′,∠C=∠C′,∴∠C=∠C′=40°,∠A=∠A′=35°∴∠B=180°−35°−40°=105°.故答案为:105°.【点睛】本题考查了轴对称图形的性质,全等的性质,三角形内角和定理,理解轴对称图形的性质是解题的关键.8、【分析】根据翻转变换的性质得到,,根据三角形的外角的性质计算,即可得到答案.【详解】解:∵,∴由折叠的性质可知,,,设,∵,∴,解得:,∴,,故答案为:.【点睛】本题考查的是翻转变换的性质,三角形的外角的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9、8【分析】首先根据点P关于OA、OB的对称点分别是P1,P2,可得PD=P1D,PC=P2C;然后根据P1P2=8cm,可得P1D+DC+P2C=8cm,所以PD+DC+PC=8cm,即△PCD的周长为8cm,据此解答即可.【详解】解:∵点P关于OA、OB的对称点分别是P1,P2,∴PD=P1D,PC=P2C;∵P1P2=8(cm),∴P1D+DC+P2C=8(cm),∴PD+DC+PC=8(cm),即△PCD的周长为8cm.故答案为:8.【点睛】本题考查了轴对称的性质的应用,要熟练掌握,解题的关键是判断出:PD=P1D,PC=P2C.此题还考查了三角形的周长的含义以及求法的应用,要熟练掌握.10、【分析】根据角平分线的定义求得,进而根据三角形的外角性质即可求得的度数.【详解】∠BAC=80°,AD是ABC的角平分线,又∠C=45°故答案为:【点睛】本题考查了角平分线的定义,三角形的外角性质,掌握以上知识是解题的关键.三、解答题1、(1)见解析;(2)15.【分析】(1)证△ECD≌△ACD(SAS),得EC=AC,DE=AD,∠CED=∠A=60°,再证BE=DE,则BE=AD,即可得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,证△ACB≌△ACF(SAS),得CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证△CGE≌△CDE(SAS),得CG=CD=3,GE=DE=2,∠DCE=∠GCE,再证△CFG是等边三角形,得FG=CG=3,即可求解.【详解】(1)证明:在CB上截取CE=AE,连接DE,如图所示:∵CD平分∠ACB,∴∠BCD=∠ACD,又∵CD=CD,∴△ECD≌△ACD(SAS),∴EC=AC,DE=AD,∠CED=∠A=60°,∵∠ACB=90°,∠A=60°,∴∠B=30°,又∵∠CED=∠EDB+∠B,∴∠EDB=60°-30°=30°,∴∠EDB=∠B,∴BE=DE,∴BE=AD,∵BC=EC+BE,∴BC=AC+AD;(2)解:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,如图所示:∵C是BD边的中点,BD=6,∴CB=CD=BD=3,∵AC平分∠BAE,∴∠BAC=∠FAC,又∵AC=AC,∴△ACB≌△ACF(SAS),∴CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证:△CGE≌△CDE(SAS),∴CG=CD=3,GE=DE=2,∠DCE=∠GCE,∵CB=CD,∴CG=CF,∵∠ACE=120°,∴∠BCA+∠DCE=180°-120°=60°,∴∠FCA+∠GCE=60°,∴∠FCG=180°-60°-60°=60°,∴△FGC是等边三角形,∴FG=FC=3,∴AE=AF+GE+FG=10+2+3=15.【点睛】本题考查了全等三角形的判定及性质、角平分线定义、等边三角形的判定与性质、等腰三角形的判定与性质等知识,本题综合性强,熟练掌握等边三角形的判定与性质,正确作出辅助线,构造全等三角形是解题的关键.2、(1)见解析;(2)、、的坐标分别为,,【分析】(1)根据作轴对称图形的步骤,先找出三个顶点关于x轴的对称点,然后依次连接即可;(2)根据点在坐标中的位置直接读出坐标即可.【详解】解:(1)关于x轴成轴对称的图形如图所示:(2)、、的坐标分别为,,.【点睛】题目主要考查成轴对称图形的作法,理解作法是解题关键.3、(1)7;(2)7<L<10.【分析】(1)由翻折变换的性质可得CE=CD,BE=BC,再求出AE=2,AD+DE=AC=5,然后由三角形的周长公式计算即可;(2)由翻折变换的性质可得CE=CD,BE=BC,再求出AE=2,AD+DE=AC=5,然后由三角形的三边关系求出2<AE<5,即可求解.【详解】解:(1)∵折叠△ABC,顶点C落在AB边上的点E处,∴DE=DC,BE=BC=6,∴AE=AB-BE=8-6=2,∵AD+DE=AD+CD=AC=5,∴△AED的周长=AD+DE+AE=5+2=7;(2)∵折叠△ABC,顶点C落在AB边下方的点E处,∴DE=DC,BE=BC=6,在△ADE中,AD+DE=AD+CD=AC=5,AE<AD+DE,即AE<5.在△ABE中,AE>AB-BE,即AE>2.∴2<AE<5,∴2+AD+DE<AE+AD+DE<5+AD+DE,即2+5<L<5+5,即7<L<10,故答案为:7<L<10.【点睛】本题考查了翻折变换的性质、三角形周长的计算以及三角形的三边关系等知识,熟练掌握翻折变换的性质是解题的关键.4、(1)见解析;(2)见解析;(3)见解析;(4)轴对称图形【分析】(1)以为圆心,以线段的长为半径画圆,交OA,OB,OC上于点、、,即可;(2)以为圆心,以线段的长为半径画圆,交OD上于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论