中考数学总复习《 圆》及参考答案详解【新】_第1页
中考数学总复习《 圆》及参考答案详解【新】_第2页
中考数学总复习《 圆》及参考答案详解【新】_第3页
中考数学总复习《 圆》及参考答案详解【新】_第4页
中考数学总复习《 圆》及参考答案详解【新】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学总复习《圆》考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O的位置关系是()A.点P在⊙O内 B.点P在⊙O外 C.点P在⊙O上 D.无法确定2、如图,五边形是⊙O的内接正五边形,则的度数为(

)A. B. C. D.3、如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是(

)A.在⊙O内 B.在⊙O上 C.在⊙O外 D.以上都有可能4、如图,在△ABC中,AG平分∠CAB,使用尺规作射线CD,与AG交于点E,下列判断正确的是(

A.AG平分CDB.C.点E是△ABC的内心D.点E到点A,B,C的距离相等5、已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为_____.2、如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________.3、如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=_______.4、一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是_____.5、某圆的周长是12.56米,那么它的半径是______________,面积是__________.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.2、如图,在△ABC中,AB=AC,∠BAC=120°,点D在边BC上,⊙O经过点A和点B且与边BC相交于点D.(1)判断AC与⊙O的位置关系,并说明理由.(2)当CD=5时,求⊙O的半径.3、如图,,点在上,且,以为圆心,为半径作圆.(1)讨论射线与公共点个数,并写出对应的取值范围;(2)若是上一点,,当时,求线段与的公共点个数.4、在下列正多边形中,是中心,定义:为相应正多边形的基本三角形.如图1,是正三角形的基本三角形;如图2,是正方形的基本三角形;如图3,为正边形…的基本三角形.将基本绕点逆时针旋转角度得.(1)若线段与线段相交点,则:图1中的取值范围是________;图3中的取值范围是________;(2)在图1中,求证(3)在图2中,正方形边长为4,,边上的一点旋转后的对应点为,若有最小值时,求出该最小值及此时的长度;(4)如图3,当时,直接写出的值.5、如图,AB、CD是⊙O中两条互相垂直的弦,垂足为点E,且AE=CE,点F是BC的中点,延长FE交AD于点G,已知AE=1,BE=3,OE=.(1)求证:△AED≌△CEB;(2)求证:FG⊥AD;(3)若一条直线l到圆心O的距离d=,试判断直线l是否是圆O的切线,并说明理由.-参考答案-一、单选题1、B【解析】【分析】根据d,r法则逐一判断即可.【详解】解:∵r=3,d=5,∴d>r,∴点P在⊙O外.故选:B.【考点】本题考查了点与圆的位置关系,熟练掌握d,r法则是解题的关键.2、D【解析】【分析】先根据正五边形的内角和求出每个内角,再根据等边对等角得出∠ABE=∠AEB,然后利用三角形内角和求出∠ABE=即可.【详解】解:∵五边形是⊙O的内接正五边形,∴∠A=∠ABC=,AB=AE,∴∠ABE=∠AEB,∴∠ABE=,∴.故选:D.【考点】本题考查圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算,掌握圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算是解题关键.3、A【解析】【详解】如图,连接OA,则在直角△OMA中,根据勾股定理得到OA=.∴点A与⊙O的位置关系是:点A在⊙O内.故选A.4、C【解析】【分析】根据作法可得CD平分∠ACB,结合题意即可求解.【详解】解:由作法得CD平分∠ACB,

∵AG平分∠CAB,∴E点为△ABC的内心故答案为:C.【考点】此题考查了尺规作图(角平分线),以及三角形角平分线的性质,熟练掌握相关基本性质是解题的关键.5、C【解析】【分析】先依据题意画出图形,如图(见解析),过点A作于D,利用勾股定理可求出AD的长,再根据三角形内切圆的性质、三角形的面积公式即可得出答案.【详解】解:如图,,内切圆O的半径为,切点为,则过点A作于D,设,则由勾股定理得:则,即解得,即又即解得则内切圆的半径为故选:C.【考点】本题考查了三角形内切圆的性质、勾股定理等知识点,读懂题意,正确画出图形,并求出AD的长是解题关键.二、填空题1、6【解析】【分析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式列方程求解计算即可.【详解】解:∵正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r,∴,解得r=6.(负根舍去)则正六边形的边长为6.故答案为:【考点】本题考查的是正多边形与圆,扇形面积,掌握以上知识是解题的关键.2、44°【解析】【分析】首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.【详解】连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案为44°【考点】此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.3、48°【解析】【分析】连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可.【详解】连接OA,∵五边形ABCDE是正五边形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案为48°.点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键.4、60π【解析】【分析】利用圆锥的侧面积公式:,求出圆锥的母线即可解决问题.【详解】解:圆锥的母线,∴圆锥的侧面积=π×10×6=60π,故答案为:60π.【考点】本题考查了圆锥的侧面积,勾股定理等知识,解题的关键是记住圆锥的侧面积公式.5、

2米

12.56平方米【解析】【分析】根据周长公式转化为,将C=12.56代入进行计算得到半径,继续利用面积公式,代入半径的值求出面积的结果.【详解】因为C=2πr,所以==2,所以r=2(米),因为S=πr2=3.14×22=12.56(平方米).故答案为:2米

12.56平方米.【考点】考查圆的面积和周长与半径之间的关系,学生必须熟练掌握圆的面积和周长的求解公式,选择相应的公式进行计算,利用公式是解题的关键.三、解答题1、(1)见解析(2)【解析】【分析】(1)根据勾股定理的逆定理得到∠AEM=90°,由于,根据平行线的性质得∠ABC=90°,然后根据切线的判定定理即可得到BC是⊙O的切线;(2)连接OM,设⊙O的半径是r,在Rt△OEM中,根据勾股定理得到r2=32+(4−r)2,解方程即可得到⊙O的半径,即可得出答案.【详解】(1)证明:∵在△AME中,ME=3,AE=4,AM=5,∴AM2=ME2+AE2,∴△AME是直角三角形,∴∠AEM=90°,又∵,∴∠ABC=∠AEM=90°,∴AB⊥BC,∵AB为直径,∴BC是⊙O的切线;(2)解:连接OM,如图,设⊙O的半径是r,在Rt△OEM中,OE=AE−OA=4−r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4−r)2,解得:r=,∴AB=2r=.【考点】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了勾股定理和勾股定理的逆定理.2、(1)AC与⊙O相切,理由见解析(2)⊙O的半径为5【解析】【分析】(1)连接AO,根据等腰三角形的性质得到∠B=∠C=30°,∠BAO=∠B=30°,求得∠AOC=60°,根据三角形的内角和得到∠OAC=180°-60°-30°=90°,于是得到AC是⊙O的切线;(2)连接AD,推出△AOD是等边三角形,得到AD=OD,∠ADO=60°,求得∠DAC=∠ADO-∠C=30°,得到AD=CD=5,于是得到结论.(1)解:AC是⊙O的切线,理由如下:连接AO,∵AB=AC,∠BAC=120°,∴∠B=∠C=(180°-∠BAC)=30°,∵AO=BO,∴∠BAO=∠B=30°,∴∠AOC=2∠B=60°,∴∠OAC=180°-∠AOC-∠C=180°-60°-30°=90°,∵AO是⊙O的半径,∴AC是⊙O的切线;(2)解:连接AD,∵AO=OD,∠AOD=60°,∴△AOD是等边三角形,∴AD=OD,∠ADO=60°,∴∠DAC=∠ADO-∠C=30°,∴∠DAC=∠C=30°,∴AD=CD=OD=5,∴⊙D的半径为5.【考点】本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.3、(1)见解析

(2)0个【解析】【分析】(1)作于点,由,可得点到射线的距离,根据直线与圆的位置关系的定义即可判断射线OA与圆M的公共点个数;(2)连接.可得,由可得,得到,故当时,可判断线段与的公共点个数.【详解】(1)如图,作于点.,∴点到射线的距离.∴当时,与射线只有一个公共点;当时,与射线没有公共点;当时,与射线有两个公共点;当时,与射线只有一个公共点.(2)如图,连接..,.∴当时,线段与的公共点个数为0.【考点】本题主要考查了直线与圆的位置关系,根据圆心到直线的距离判断位置关系是解题的关键.4、(1),;(2)见解析;(3)最小值:,此时=2+;(4)【解析】【分析】(1)根据正多边形的中心角的定义即可解决问题;(2)如图1中,作OE⊥BC于E,OF⊥于F,连接.利用全等三角形的性质分别证明:BE=,即可解决问题;(3)如图2中,作点O关于BC的对称点E,连接OE交BC于K,连接交BC于点,连接,此时的值最小,即有最小值.(4)利用等腰三角形三线合一的性质即可解决问题;【详解】(1)由题意图1中,∵△ABC是等边三角形,O是中心,∴∠AOB=120°∴∠α的取值范围是:0°<α≤120°,图3中,∵ABCDEF…是正n边形,O是中心,∴∠BOC=,∴∠α的取值范围是:0°<α≤,故答案为:0°<α≤120°,0°<α≤.(2)如图1中,作OE⊥BC于E,OF⊥于F,连接.∵∠OEB=∠OF=90°,根据题意,O是中心,∴OB=OC,∴∠OBE=∠,∴△OBE≌△OF(AAS),∴OE=OF,BE=F∵,∴Rt△≌Rt△(HL),∴,∴.(3)如图2中,作点O关于BC的对称点E,连接OE交BC于K,连接交BC于点,连接,此时的值最小.∵∠=135°,∠BOC=90°,∴∠OCB=∠=45°,∴∥BC,∵OK⊥BC,OB=OC,∴BK=CK=2,OB=2,∵∥,OK=KE,∴,∴==,∴=2+,在Rt△中,=.∵,∴有最小值,最小值为,此时=2+.(4)如图3中,∵ABCDEF…是正n边形,O是中心,∴∠BOC=,∵OC⊥,,∴∠=∠=∠BOC=,∴α=.【考点】本题属于多边形综合题,考查了正多边形的性质,旋转变换,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.5、(1)见解析;(2)见解析;(3)直线l是圆O的切线,理由见解析【解析】【分析】(1)由圆周角定理得∠A=∠C,由ASA得出△AED≌△CEB;(2)由直角三角形斜边上的中线性质得EF=BC=BF,由等腰三角形的性质得∠FEB=∠B,由圆周角定理和对顶角相等证出∠A+∠AEG=90°,进而得出结论;(3)作OH⊥AB于H,连接OB,由垂径定理得出AH=BH=AB=2,则EH=AH−AE=1,由勾股定理求出OH=1,OB=,由一条直线l到圆心O的距离d=等于⊙O的半径,即可得出结论.【详解】(1)证明:由圆周角定理得:∠A=∠C,在△AED和△CEB中,,∴△AED≌△CEB(ASA);(2)证明:∵AB⊥CD,∴∠AED=∠CEB=90°,∴∠C+∠B=90°,∵点F是BC的中点,∴EF=BC=BF,∴∠FEB=∠B,∵∠A=∠C,∠AEG=∠FE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论