




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
冀教版9年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,矩形ABCD中,G是BC的中点,过A、D、G三点的⊙O与边AB、CD分别交于点E、点F,给出下列判断:(1)AC与BD的交点是⊙O的圆心;(2)AF与DE的交点是⊙O的圆心;(3)AE=DF;(4)BC与⊙O相切,其中正确判断的个数是()A.4 B.3 C.2 D.12、如图是正方体的展开图,则与“脱”字所在面相对的面上标的字是()A.取 B.得 C.胜 D.利3、如图,这是一个机械模具,则它的俯视图是()A. B.C. D.4、抛物线的函数表达式为,若将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为()A. B.C. D.5、已知平面直角坐标系中有点A(﹣4,﹣4),点B(a,0),二次函数y=x2+(k﹣3)x﹣2k的图象必过一定点C,则AB+BC的最小值是()A.4 B.2 C.6 D.36、下列事件中,是必然事件的是()A.400人中有两个人的生日在同一天 B.两条线段可以组成一个三角形C.早上的太阳从西方升起 D.打开电视机,它正在放动画片7、下列说法正确的是()A.三点确定一个圆 B.任何三角形有且只有一个内切圆C.相等的圆心角所对的弧相等 D.正多边形一定是中心对称图形8、若二次函数y=-x2+mx在-2≤x≤1时的最大值为5,则m的值是()A.或6 B.或6 C.或6 D.或9、如图所示的几何体的主视图是()A. B.C. D.10、一个正方体的表面展开图如图所示,将其围成正方体后,“战”字对面的字是()A.早 B.胜 C.疫 D.情第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、小华为学校“赓续百年初心,庆祝建党百年”活动布置会场,在一个不透明的口袋里有4根除颜色以外完全相同的缎带,其中2根为红色,2根为黄色,从口袋中随机摸出两根缎带,则恰好摸出1根红色缎带,1根黄色缎带的概率是_____.2、已知二次函数,当y随x的增大而增大时,自变量x的取值范围是______.3、一个布袋里装有2个红球,2个黄球,它们除颜色不同外其余都相同.现从布袋里摸出一个球,记下颜色后不放回,再摸出一个球,两个球恰好“一红一黄”的概率是_______.4、如图,在中,,,,是内切圆,则的半径为______.5、定义:在平面直角坐标系中,若点的横、纵坐标都为整数,则把这样的点叫做“整点”.如:A(1,0),B(﹣3,2)都是“整点”,抛物线y=ax2﹣2ax+a+2(a<0)与x轴交于P,Q两点,若该抛物线在P,Q之间的部分与线段PQ所围的区域(不包括边界)恰有3个整点,则a的取值范围是_____.6、把如图所示的图形折成一个正方体盒子,折好后与“欢”相对的字是_____.7、如图,一个圆锥形橡皮泥的主视图是三角形ABC,若BC=6,则这个圆锥形橡皮泥的底面积为_____.(不取近似值)8、已知二次函数y1=x2-2x+b的图象过点(-2,5),另有直线y2=5,则符合条件y1>y2的x的范围是________.9、已知抛物线,将其图象先向右平移1个单位长度,再向上平移2个单位长度,则得到的抛物线解析式为________.10、圆锥的底面周长为3,母线长为5cm,该圆锥侧面展开扇形的圆心角是________°.三、解答题(6小题,每小题10分,共计60分)1、如图,正比例函数y1=x与二次函数y2=x2-bx的图象相交于O(0,0),A(4,4)两点.(1)求b的值;(2)当y1y2时,直接写出x的取值范围.2、如图,在中,,BO平分,交AC于点O,以点O为圆心,OC长为半径画.(1)求证:AB是的切线;(2)若,,求的半径.3、如图,是由一些小正方体所搭的几何体从上面看得到的图形,小正方形中的数字表示在该位置小正方体的个数,请在方格中画出从正面看和从左面看得到的几何体的形状图.4、如图,是的直径,是半径,连接,.延长至点,使,过点作交的延长线于点.(1)求证:是的切线;(2)若,,求半径的长.5、如图,在中,AB是直径,弦;垂足为H,E为上一点,F为弦DC延长线上一点,连接FE并延长交直径AB的延长线于点G,连接AE交CD于点P,若.(1)求证:FE是的切线;(2)若的半径为8,,求BG的长.6、在“庆元旦、迎新年”班级活动中,同学们准备了四个节目:A唱歌、B跳舞、C说相声、D弹古筝.并通过抽签的方式决定这四个节目的表演顺序.(1)第一个节目是说相声的概率是______;(2)求第二个节目是弹古筝的概率.-参考答案-一、单选题1、B【解析】【分析】连接DG、AG,作GH⊥AD于H,连接OD,如图,先确定AG=DG,则GH垂直平分AD,则可判断点O在HG上,再根据HG⊥BC可判定BC与圆O相切;接着利用OG=OD可判断圆心O不是AC与BD的交点;然后根据四边形AEFD为⊙O的内接矩形可判断AF与DE的交点是圆O的圆心.【详解】解:连接DG、AG,作GH⊥AD于H,连接OD,如图,∵G是BC的中点,∴CG=BG,∵CD=BA,根据勾股定理可得,∴AG=DG,∴GH垂直平分AD,∴点O在HG上,∵AD∥BC,∴HG⊥BC,∴BC与圆O相切;∵OG=OD,∴点O不是HG的中点,∴圆心O不是AC与BD的交点;∵∠ADF=∠DAE=90°,∴∠AEF=90°,∴四边形AEFD为⊙O的内接矩形,∴AF与DE的交点是圆O的圆心;AE=DF;∴(1)错误,(2)(3)(4)正确.故选:B.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了矩形的性质和三角形外心.2、C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“脱”与“胜”是相对面,“贫”与“得”是相对面,“取”与“利”是相对面.故选:C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3、D【解析】【分析】找到从上面看所得到的图形即可,注意看见的线用实线表示.【详解】解:从上面看可得两个并排放着两个正方形,左边正方形内有一个内切圆.故选:D.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4、C【解析】【分析】此题可以转化为求将抛物线“向右平移3个单位长度,向上平移3个单位长度”后所得抛物线解析式,将抛物线直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:∵抛物线的顶点坐标为,∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线顶点坐标为,∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线的解析式为,∴将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为.故选:C【点睛】此题主要考查了二次函数图象与几何变换,正确掌握平移规律——左加右减,上加下减是解题关键.5、C【解析】【分析】将抛物线解析式变形求出点C坐标,再根据两点之间线段最短求出AB+BC的最小值即可.【详解】解:二次函数y=x2+(k﹣3)x﹣2k=(x-2)(x-1+k)-2∴函数图象一定经过点C(2,-2)点C关于x轴对称的点的坐标为(2,2),连接,如图,∵∴故选:C【点睛】本题主要考查了二次函数的性质,两点之间线段最短以及勾股定理等知识,明确“两点之间线段最短”是解答本题的关键.6、A【解析】【分析】直接利用随机事件、必然事件的定义分别分析得出答案.【详解】解:A、400人中有两个人的生日在同一天属于必然事件,故此选项符合题意;B、两条线段可以组成一个三角形,是不可能事件,故此选项不合题意;C、早上太阳从西方升起,这个事件为不可能事件,故此选项不合题意;D、打开电视机,有可能正在播放动画片,也有可能播放其他节目,这是随机事件,故此选项不合题意;故选:A.【点睛】此题主要考查了随机事件、必然事件的定义,解题的关键是正确把握相关定义.7、B【解析】【分析】根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.【详解】解:A、不在同一直线上的三点确定一个圆,故错误;B、任何三角形有且只有一个内切圆,正确;C、在同圆或等圆中,相等的圆心角所对的弧相等,故错误;D、边数是偶数的正多边形一定是中心对称图形,故错误;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8、C【解析】【分析】表示出对称轴,分三种情况,找出关于m的方程,解之即可得出结论.【详解】解:∵y=-x2+mx,∴抛物线开口向下,抛物线的对称轴为x=-,①当≤-2,即m≤-4时,当x=-2时,函数最大值为5,∴-(-2)2-2m=5,解得:m=-;②当≥1,即m≥2时,当x=1时,函数最大值为5,∴-12+m=5,解得:m=6.③当-2<<1,即-4<m<2时,当x=时,函数最大值为5,∴-()2+m•=5解得m=2(舍去)或m=-2(舍去),综上所述,m=-或6,故选:C.【点睛】本题考查了二次函数的最值、解一元二次方程,解题的关键是:分三种情况,找出关于m的方程.9、A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看,如图:故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上边看得到的图形是俯视图,从左边看得到的图形是左视图.10、D【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“战”字相对的面上的汉字是“情”.故选:D.【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.二、填空题1、【解析】【分析】列表知共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,根据概率公式求解即可.【详解】解:列表如下:红红黄黄红(红,红)(黄,红)(黄,红)红(红,红)(黄,红)(黄,红)黄(红,黄)(红,黄)(黄,黄)黄(红,黄)(红,黄)(黄,黄)由表知,共有12种等可能的情况,恰好摸出1根红色缎带1根黄色缎带的有8种结果,所以摸出1根红色缎带1根黄色缎带的概率=,故答案为:.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.2、【解析】【分析】函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大,进而可得自变量x的取值范围.【详解】解:由知函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大∴自变量x的取值范围是故答案为:.【点睛】本题考查了二次函数的图象与性质.解题的关键在于熟练把握二次函数的图象与性质.3、【解析】【分析】根据题意先画出树形图得到所有可能结果,即可求出两次摸出的球恰好颜色不同的概率.【详解】根据题意画图如下:∵共有12种情况,两次摸出的球恰好“一红一黄”有8种情况,∴两次摸出的球恰好颜色相同的概率是:;故答案为:【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题的关键是要注意此题是放回还是不放回.用到的知识点为:概率=所求情况数与总情况数之比.4、1【解析】【分析】根据三角形内切圆与内心的性质和三角形面积公式解答即可.【详解】解:∵∠C=90°,AC=3,AB=5,∴BC==4,如图,分别连接OA、OB、OC、OD、OE、OF,∵⊙O是△ABC内切圆,D、E、F为切点,∴OD⊥BC,OE⊥AC,OF⊥AB于D、E、F,OD=OE=OF,∴S△ABC=S△BOC+S△AOC+S△AOB=BC•DO+AC•OE+AB•FO=(BC+AC+AB)•OD,∵∠ACB=90°,∴,∴.故答案为:1.【点睛】此题考查三角形内切圆与内心,勾股定理,熟练掌握三角形内切圆的性质是解答本题的关键.5、【解析】【分析】将函数解析式化为顶点式,确定图象的对称轴及顶点坐标,得到3个整点的位置,由此得到不等式组,求解即可.【详解】解:∵y=ax2﹣2ax+a+2=,∴函数的对称轴为直线x=1,顶点坐标为(1,2),∴P,Q两点关于直线x=1对称,根据题意,抛物线y=ax2﹣2ax+a+2(a<0)与x轴交于P,Q两点(不包括边界)恰有3个整点,这些整点是(0,1),(1,1),(2,1),∵当x=0时,y=a+2,∴,当x=-1时,y=4a+2,∴,∴,解得,故答案为:..【点睛】此题考查了将二次函数一般式化为顶点式,二次函数的性质,一元一次不等式组的应用,根据二次函数的对称轴及顶点确定3个点的位置,由此顶点不等式组是解题的关键.6、团【解析】【分析】根据正方体表面展开图的特征进行判断即可.【详解】解:由正方体表面展开图的“相间是对面”可知,“欢”的对面是“团”,故答案为:团.【点睛】本题考查正方体相对两个面上的文字,解题的关键是掌握正方体表面展开图的特征.7、【解析】【分析】由主视图性质可知主视图中BC即为圆锥形橡皮泥底面圆的直径,故可得半径为3,再由圆的面积公式即可求得圆锥形橡皮泥的底面积为.【详解】由题意可知圆锥形橡皮泥底面圆的直径为6,故半径r为6÷2=3由圆的面积公式有故圆锥形橡皮泥的底面积为故答案为:.【点睛】本题考查了三视图中的主视图、圆锥的特征以及圆的面积公式,由主视图得出BC长为圆锥形橡皮泥的底面圆的直径是解题的关键.8、x<−2或x>4##x>4或x<-2【解析】【分析】先根据抛物线经过点(-2,5),求出函数解析式,再求出抛物线的对称轴,根据函数的对称性,找到抛物线经过另一点(4,5),从而得出结论.【详解】解:∵二次函数y1=x2-2x+b的图象过点(-2,5),∴5=(-2)2-2×(-2)+b,解得:b=-3,∴二次函数解析式y1=x2-2x-3,∴抛物线开口向上,对称轴为x=-=1,∴抛物线过点(4,5),∴符合条件y1>y2的x的范围是x<-2或x>4.故答案为:x<-2或x>4.【点睛】本题考查了二次函数与不等式(组),关键是对二次函数的图象与性质的掌握和应用.9、【解析】【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:∵抛物线的顶点坐标为(0,2),其图象先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线解析式为即故答案为:【点睛】本题考查了抛物线的平移规律.关键是确定平移前后抛物线的顶点坐标,寻找平移规律.10、108【解析】【分析】圆锥的底面周长即为侧面扇形的弧长,利用弧长公式即可求得扇形的圆心角.【详解】解:由题意可得:,解得:n=108,∴圆锥侧面展开扇形的圆心角是108°,故答案为:108.【点睛】本题考查了扇形的弧长公式;用到的知识点为:圆锥的弧长等于底面周长.三、解答题1、(1)(2)或【解析】【分析】(1)将点A(4,4)代入进行解答即可得;(2)由图像即可得.(1)解:将点A(4,4)代入得,解得.(2)解:由图像可知,当或时,.【点睛】本题考查了正比函数,二次函数,解题的关键是掌握正比函数的性质和二次函数的性质.2、(1)见解析(2)2.4.【解析】【分析】(1)过O作OD⊥AB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;(2)设圆O的半径为r,即OC=r,由得BC=3r,由勾股定理求得AD=,AB=3r+根据方程求解即可.(1)如图所示:过O作OD⊥AB交AB于点D.∵OC⊥BC,且BO平分∠ABC,∴OD=OC,∵OC是圆O的半径∴AB与圆O相切.(2)设圆O的半径为r,即OC=r,∵∴∴∵OC⊥BC,且OC是圆O的半径∴BC是圆O的切线,又AB是圆O的切线,∴BD=BC=3r在中,∴∴在中,∴整理得,解得,,(不合题意,舍去)∴的半径为2.4【点睛】此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.3、见解析【解析】【分析】根据简单组合体三视图的意义和画法画出相应的图形即可.【详解】解:从正面看和从左面看得到的几何体
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师招聘之《幼儿教师招聘》练习题库有答案详解
- 渔业养殖水产品与健康饮食书籍出版创新创业项目商业计划书
- 教师招聘之《小学教师招聘》题库检测模拟题【模拟题】附答案详解
- 教师招聘之《幼儿教师招聘》考试综合练习完整参考答案详解
- 教师招聘之《幼儿教师招聘》强化训练含答案详解(模拟题)
- 教师招聘之《小学教师招聘》高分题库附答案详解【满分必刷】
- 2025年呼伦贝尔莫力达瓦达斡尔族自治旗内蒙古大学校园引才笔试备考附答案详解(突破训练)
- 患者隐私保护-医疗机构医疗质量安全专项整治行动方案
- 2025年美妆行业个性化定制服务模式在短视频平台中的应用报告
- 2025年私募股权投资基金行业投资热点:生物制药生产与质量控制退出策略深度分析
- 2025年北京市水务局所属事业单位招聘工作人员101人笔试高频重点提升(共500题)附带答案详解
- 红光治疗仪的使用
- 高教版2023年中职教科书《语文》(基础模块)上册教案全册
- 湖北省武汉市汉阳区2024-2025 学年上学期期中质量检测八年级英语试卷(含笔试答案无听力原文及音频)
- DB11T 1649-2019 建设工程规划核验测量成果检查验收技术规程
- 幼儿园大班幼儿拼音字母表幼儿拼音字母表
- 《吴文化教程(活页版)》 课件全套 模块1-12 历史特征- 吴地产业经济
- 三级筑路工(高级)职业技能鉴定考试题库(含答案)
- 大学新生见面会初见欢共进步启新程模板
- 2024年全国期货从业资格之期货投资分析考试高频题(附答案)
- 光伏项目施工总进度计划表(含三级)
评论
0/150
提交评论